Combinatorial Mathematics

Mong－Jen Kao（高孟駿）
Monday 18：30－20：20

Outline

- The Maximum Matching Problem
- A Generic Algorithm and the Berge's Theorem
- The Augmenting Path Problem in Bipartite Graphs
- A simple DFS-like recursive algorithm
- Concluding Notes
- The best algorithms for Maximum Matching

The Maximum Matching Problem

To compute a maximum-size matching for the input graph.

The maximum matching problem

- Input:
- A graph $G=(V, E)$.
- Output:
- A matching $M \subseteq E$ that has the maximum size among all possible matchings.

Maximal matching v.s. Maximum matching

- A matching M is called maximal, if there exists no other matching M^{\prime} that contains M.

A maximal matching

- A matching M is called maximum, if its size is at least the size of all other matchings.

A maximum matching

- Note that, a maximal matching is not necessarily a maximum matching.

How Can We Enlarge the Size of a Matching?

- To enlarge the size of a matching, we can add edges to the current matching until it becomes maximal.
- However,
a maximal matching is not necessarily a maximum matching.
- What can we do?

A matching with a larger size

Alternating Path \& Augmenting Path

- Given a matching M,

- an M-alternating path is a path that alternates between edges in M and edges not in M.
- an M-augmenting path is an M-alternating path that both starts and ends at unmatched vertices.
$v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ is an M-augmenting paths.
v_{1}, v_{2}, v_{3} and $v_{2}, v_{3}, v_{4}, v_{5}$ are both M-alternating paths.

Observation

- We can see that, each M-augmenting path P is a way to enlarge the size of M by 1 .
- This is done by swapping the status of the edges on the path.
- Matched edges \Rightarrow unmatched
- Unmatched edges \Rightarrow matched

So, this is still a valid matching with size increased by 1 .

Observation

- We can see that,
each M-augmenting path P is a way to enlarge the size of M by 1 .
- $M^{\prime}:=(M \backslash P) \cup(P \backslash M)$ is a valid matching with $\left|M^{\prime}\right|=|M|+1$.

A simple greedy algorithm

- The observation suggests the following algorithm.
- Let $G=(V, E)$ be the input graph.

1. $M \leftarrow \emptyset$.
2. Repeat until there is no M-augmenting path in G.
a. Find an M-augmenting path P.
b. Set $M \leftarrow(M \backslash P) \cup(P \backslash M)$.
3. Output M.
4. $M \leftarrow \emptyset$.
5. Repeat until there is no M-augmenting path in G.
a. Find an M-augmenting path P.
b. Set $M \leftarrow(M \backslash P) \cup(P \backslash M)$.
6. Output M.

The philosophy behind the algorithm is very simple :
"Make the current matching larger until no augmenting path exists."

- A very natural question is that,
"Does it always output the maximum matching?"

Theorem 1. (Berge 1957).

A matching M in a graph G is a maximum matching if and only if G has no M-augmenting path.

- Theorem 1 assures the correctness of the previous algorithm.
"Yes, the algorithm always outputs a maximum matching for G."
- The next question is,
"is the algorithm efficient?"

That is, can we efficiently determine the existence of augmenting paths and compute one if it exists?

Symmetric Difference

- Let $G=(V, E)$ be a graph, and $A, B \subseteq E$ be two edge sets.
- The symmetric difference of A and B is defined as

$$
A \triangle B:=(A \backslash B) \cup(B \backslash A) .
$$

- That is, the set of edges that appear exactly once in A and B.

Lemma 2.

Let M, M^{\prime} be two matchings for a graph G.
Every component of $M \Delta M^{\prime}$ is a path or a cycle with an even length.

- Let $F:=M \triangle M^{\prime}$.
- Each vertex in G is incident to at most two edges in F.
- Hence, each component in F is either a path or a cycle.
- Consider any cycle in F.
- The cycle alternates between edges in M and M^{\prime}.

Theorem 1. (Berge 1957).

A matching M in a graph G is a maximum matching if and only if G has no M-augmenting path.

- Let us prove Theorem 1.
- The direction \Rightarrow is clear.
- It suffices to prove that, if G has no M-augmenting path, then M is a maximum matching.
- We will prove the contrapositive of the above, i.e.,
if M^{\prime} is a matching with $\left|M^{\prime}\right|>|M|$, then G has an M-augmenting path.

It suffices to prove that, if M^{\prime} is a matching with $\left|M^{\prime}\right|>|M|$, then G has an M-augmenting path.

- Let $F:=M \triangle M^{\prime}$.
- By Lemma 2, F is a union of paths and even cycles.
- Since $\left|M^{\prime}\right|>|M|$,
there must be a component in F that has more edges from M^{\prime} than M.
- The component must be a path.

Furthermore, it must start and ends with edges in M^{\prime}.

- The path is then an M-augmenting path.

The Augmenting Path Problem

in Bipartite Graphs

The Augmenting Path Problem in Bipartite Graphs

- Input:
- A bipartite graph $G=(V, E)$ and a matching M for G.
- Goal :
- An M-augmenting path for G, or asserts that there exists no such paths.
- We will present an $O(n+m)$ algorithm for this problem.

This leads to an $O(n m)$ algorithm for the maximum bipartite matching problem.

A Simple DFS-like Algorithm

- Finding an M-augment path problem in a bipartite graph can be done by a simple \& intuitive DFS-like algorithm.
- We start with an unmatched vertex, say, u.
- The goal is to find an M-augmenting path starting from u.
- Consider each neighbor of u, say, v.

- We start with an unmatched vertex, say, u.
- Our goal is to find an M-augmenting path starting from u.
- Consider each neighbor of u, say, v.

Then, the goal becomes finding an M-augmenting path starting from u^{\prime}.

If v is matched, then
to form an M-augmenting path that passes v, we must follow the matched edge to some u^{\prime}.

This is a recursive problem that starts at the vertex u^{\prime}.

- We start with an unmatched vertex, say, u.
- Our goal is to find an M-augmenting path starting from u.
- Consider each neighbor of u, say, v.

Then, the goal becomes finding an M-augmenting path starting from u^{\prime}.

This is a recursive problem starting at the vertex u^{\prime}.
If v is matched, then
to form an M-augmenting path, we must follow the matched edge to some u^{\prime}.

If the recursion succeeds, we have an augmenting path for u.

- We start with an unmatched vertex, say, u.
- Our goal is to find an M-augmenting path starting from u.
- Consider each neighbor of u, say, v.

Then, the goal becomes finding an M-augmenting path starting from u^{\prime}.

If it fails, we go back to u, and continue to examine the next neighbor until all its neighbors have been examined.

This is a recursive problem starting at the vertex u^{\prime}.

The DFS-like Recursive Algorithm

- To describe the algorithm, let's assume the following.
- The graph is represented by adjacency lists.
- For each vertex v, let match $[v]$ denote the vertex to which v is matched.
$-\operatorname{match}[v]=-1$ if v is unmatched.
- The DFS-like recursive algorithm goes as follows.

Procedure Aug-Path(u)

1. Mark u as visited.
2. For each neighbor v of u, do.

- If v is unmatched, or,
if match $[v]$ is unvisited and Aug-Path(match $[v]$) is true, then
a. Set match $[u]=v$ and $\operatorname{match}[v]=u$. $/ /$ match u with v
b. Return true.

3. Return false.

The Augmenting Path Algorithm

for Bipartite Graphs

The Augmenting Path Algorithm for Bipartite Graphs

- Let $G=(V, E)$ be the input bipartite graph and M a matching for G.
- The algorithm goes as follows.

The Augmenting Path Algorithm (for Bipartite Graphs).

1. Mark all the vertices as unvisited.
2. For each unmatched vertex, say, u, do

- If Aug-Path (u) returns true, then report "Yes."

3. Report "No."

The Augmenting Path Algorithm for Bipartite Graphs

- Since each vertex is visited at most once and each edge is examined at most twice by the procedure Aug-Path(),
- The algorithm runs in $O(n+m)$ time.
- It is clear that, if $\operatorname{Aug}-\operatorname{Path}(u)$ returns true, then an M-augmenting path starting at u is found.
- To prove the correctness of the algorithm, it remains to prove that,
- There exists no M-augmenting path in the graph when the algorithm reports "No."

The Augmenting Path Algorithm for Bipartite Graphs

- To prove the correctness of the algorithm,
it remains to prove that,
- There exists no M-augmenting path in the graph when the algorithm reports "No."
- We will prove that, if the algorithm reports "No," then G has a vertex cover C of size $|M|$.

It takes at least one vertex to cover each edge in M.

- Since $|C| \geq\left|M^{\prime}\right|$ holds for all matching M^{\prime} for G, this will imply that M is a maximum matching for G.

Some Notations

- Let A and B be the two partite sets of G.
- Let U be the set of unmatched vertices in A.
- Let S be the vertices in A that are marked as visited.
- Let T be the set of vertices in B that are matched to $S \backslash U$ by M.

Theorem 3.

If the Augmenting Path Algorithm reports "No," then the set $C:=(A \backslash S) \cup T$ is a vertex cover for G with size M.

Note that, this is also a constructive proof for the König-Egeváry theorem.

Observation 1.

Since v is marked visited,
it is visited by a recursion call that originates from some $u \in U$.

- For each $v \in S$,
- There is an M-alternating path that starts at some $u \in U$ and ends at v with a matched edge in M.

Observation 2.

- There exists no edge between S and $B \backslash T$.
- By the way S is defined, there exists no edge between S and the matched vertices in B.
- If there exists an edge between S and some unmatched vertex in B, it will be an augmenting path.

A contradiction since the algorithm reports "No."

Theorem 3.

If the Augmenting Path Algorithm reports "No," then the set $C:=(A \backslash S) \cup T$ is a vertex cover for G with size M.

- The edges between S and T can be covered by T.
- By Observation 2, the remaining edges can be covered by $A \backslash S$.
- Hence, C is a vertex cover for G.

Concluding Notes

Best Algorithm for the Maximum Bipartite Matching

- In this lecture,
we have seen an $O(n m)=O\left(n^{3}\right)$ algorithm for this problem.
- The best algorithm for this problem is the Hopcroft-Karp algorithm, which runs in $O(\sqrt{n} m)=O\left(n^{2.5}\right)$.

The Hopcroft-Karp Algorithm

- The best algorithm for this problem is the Hopcroft-Karp algorithm, which runs in $O(\sqrt{n} m)=O\left(n^{2.5}\right)$.
- The idea is to perform a BFS simultaneously from all unmatched vertices in one partite set to form alternating layers until some unmatched vertices in the other partite set is met.
- Then a layer-guided DFS is used to construct a maximal set of vertex-disjoint shortest augmenting paths.
- It is guaranteed that, only $O(\sqrt{n})$ rounds are needed before the maximum matching is computed.

Maximum Matching in General Graphs

- For general graphs, a maximum matching can be computed by Edmonds Blossom algorithm in $O\left(n^{2} m\right)=O\left(n^{4}\right)$ time.
- It is a beautiful algorithm.
- The best (and more complicated) algorithm, due to Micali and Vazirani, solves this problem in $O(\sqrt{n} m)=O\left(n^{2.5}\right)$ time.

