
Combinatorial Mathematics

Mong-Jen Kao (高孟駿)

Monday 18:30 – 20:20

Outline

■ The Maximum Matching Problem

– A Generic Algorithm and the Berge’s Theorem

– The Augmenting Path Problem in Bipartite Graphs

■ A simple DFS-like recursive algorithm

■ Concluding Notes

– The best algorithms for Maximum Matching

The Maximum Matching Problem

To compute a maximum-size matching for the input graph.

■ Input :

– A graph 𝐺 = (𝑉, 𝐸).

■ Output :

– A matching 𝑀 ⊆ 𝐸 that has the maximum size among

all possible matchings.

The maximum matching problem

■ A matching 𝑀 is called maximal,

if there exists no other matching 𝑀′ that contains 𝑀.

■ A matching 𝑀 is called maximum,

if its size is at least the size of all other matchings.

■ Note that,

a maximal matching is not necessarily a maximum matching.

Maximal matching v.s. Maximum matching

A maximal matching

A maximum matching

Local maximum vs global maximum

■ To enlarge the size of a matching,

we can add edges to the current matching until it becomes maximal.

■ However,

a maximal matching is not necessarily a maximum matching.

■ What can we do?

How Can We Enlarge the Size of a Matching?

A maximal matching
A matching

with a larger size

■ Given a matching 𝑀,

– an 𝑀-alternating path is a path

that alternates between edges in 𝑀 and edges not in 𝑀.

– an 𝑴-augmenting path is an 𝑀-alternating path

that both starts and ends at unmatched vertices.

Alternating Path & Augmenting Path

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣1, 𝑣2, 𝑣3 and 𝑣2, 𝑣3, 𝑣4, 𝑣5 are

both 𝑀-alternating paths.

𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6 is

an 𝑀-augmenting paths.

■ We can see that,

each 𝑀-augmenting path 𝑃 is a way to enlarge the size of 𝑀 by 1.

– This is done by swapping the status of the edges on the path.

■ Matched edges ⟹ unmatched

■ Unmatched edges ⟹ matched

Observation

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6
𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣1 and 𝑣6 were unmatched. All internal vertices are matched only by edges on the path.

So, this is still a valid matching

with size increased by 1.

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

■ We can see that,

each 𝑀-augmenting path 𝑃 is a way to enlarge the size of 𝑀 by 1.

■ 𝑀′ ≔ 𝑀 ∖ 𝑃 ∪ 𝑃 ∖𝑀 is a valid matching with 𝑀′ = 𝑀 + 1.

Observation
𝑃

𝑀 ∖ 𝑃

𝑷 ∖𝑴

■ The observation suggests the following algorithm.

– Let 𝐺 = (𝑉, 𝐸) be the input graph.

A simple greedy algorithm

1. 𝑀 ⟵ ∅.

2. Repeat until there is no 𝑀-augmenting path in 𝐺.

a. Find an 𝑀-augmenting path 𝑃.

b. Set 𝑀 ⟵ 𝑀 ∖ 𝑃 ∪ 𝑃 ∖ 𝑀 .

3. Output 𝑀.

1. 𝑀 ⟵ ∅.

2. Repeat until there is no 𝑀-augmenting path in 𝐺.

a. Find an 𝑀-augmenting path 𝑃.

b. Set 𝑀 ⟵ 𝑀 ∖ 𝑃 ∪ 𝑃 ∖ 𝑀 .

3. Output 𝑀.

The philosophy behind the algorithm is very simple :

“Make the current matching larger until no augmenting path exists.”

■ A very natural question is that,

“Does it always output the maximum matching?”

Theorem 1. (Berge 1957).

A matching 𝑀 in a graph 𝐺 is a maximum matching

if and only if 𝐺 has no 𝑀-augmenting path.

We will address this problem later.

■ Theorem 1 assures the correctness of the previous algorithm.

“Yes, the algorithm always outputs a maximum matching for 𝐺.”

■ The next question is,

“is the algorithm efficient?”

That is, can we efficiently determine

the existence of augmenting paths and

compute one if it exists?

■ Let 𝐺 = (𝑉, 𝐸) be a graph, and 𝐴, 𝐵 ⊆ 𝐸 be two edge sets.

– The symmetric difference of 𝐴 and 𝐵 is defined as

𝐴 △ 𝐵 ≔ 𝐴 ∖ 𝐵 ∪ 𝐵 ∖ 𝐴 .

– That is, the set of edges that appear exactly once in 𝐴 and 𝐵.

Symmetric Difference

Lemma 2.

Let 𝑀,𝑀′ be two matchings for a graph 𝐺.

Every component of 𝑀△𝑀′ is a path or a cycle with an even length.

■ Let 𝐹 ≔ 𝑀 △𝑀′.

– Each vertex in 𝐺 is incident to at most two edges in 𝐹.

– Hence, each component in 𝐹 is either a path or a cycle.

■ Consider any cycle in 𝐹.

– The cycle alternates between edges in 𝑀 and 𝑀′.

– It must have an even length.

𝑀

𝑀′

𝑀△𝑀′

Theorem 1. (Berge 1957).

A matching 𝑀 in a graph 𝐺 is a maximum matching

if and only if 𝐺 has no 𝑀-augmenting path.

■ Let us prove Theorem 1.

– The direction ⟹ is clear.

– It suffices to prove that,

if 𝐺 has no 𝑀-augmenting path, then 𝑀 is a maximum matching.

■ We will prove the contrapositive of the above, i.e.,

if 𝑀′ is a matching with 𝑀′ > 𝑀 ,

then 𝐺 has an 𝑀-augmenting path.

It suffices to prove that, if 𝑀′ is a matching with 𝑀′ > 𝑀 ,

then 𝐺 has an 𝑀-augmenting path.

■ Let 𝐹 ≔ 𝑀 △𝑀′.

– By Lemma 2, 𝐹 is a union of paths and even cycles.

■ Since 𝑀′ > |𝑀|,

there must be a component in 𝐹 that has more edges from 𝑀′ than 𝑀.

– The component must be a path.

Furthermore, it must start and ends with edges in 𝑀′.

– The path is then an 𝑀-augmenting path.

The Augmenting Path Problem

in Bipartite Graphs

The augmenting path problem in bipartite graphs can be solved by DFS in 𝑂 𝑛 +𝑚 time!

■ Input :

– A bipartite graph 𝐺 = (𝑉, 𝐸) and a matching 𝑀 for 𝐺.

■ Goal :

– An 𝑀-augmenting path for 𝐺, or asserts that

there exists no such paths.

■ We will present an 𝑂(𝑛 + 𝑚) algorithm for this problem.

The Augmenting Path Problem in Bipartite Graphs

This leads to an 𝑂(𝑛𝑚) algorithm for the maximum bipartite matching problem.

■ Finding an 𝑀-augment path problem in a bipartite graph can be done

by a simple & intuitive DFS-like algorithm.

– We start with an unmatched vertex, say, 𝑢.

■ The goal is to find an 𝑀-augmenting path starting from 𝑢.

– Consider each neighbor of 𝑢, say, 𝑣.

A Simple DFS-like Algorithm

𝑢

𝑣

If 𝑣 is unmatched,

then 𝑢, 𝑣 is an 𝑀-augmenting path,

and we’re done.

– We start with an unmatched vertex, say, 𝑢.

■ Our goal is to find an 𝑀-augmenting path starting from 𝑢.

– Consider each neighbor of 𝑢, say, 𝑣.

𝑢

𝑣

If 𝑣 is matched, then

to form an 𝑀-augmenting path that passes 𝑣,

we must follow the matched edge to some 𝑢′.

𝑢′

Then, the goal becomes finding

an 𝑀-augmenting path

starting from 𝑢′.

This is a recursive problem

that starts at the vertex 𝑢′.

– We start with an unmatched vertex, say, 𝑢.

■ Our goal is to find an 𝑀-augmenting path starting from 𝑢.

– Consider each neighbor of 𝑢, say, 𝑣.

𝑢

𝑣

If 𝑣 is matched, then

to form an 𝑀-augmenting path,

we must follow the matched edge to some 𝑢′.

𝑢′

Then, the goal becomes finding

an 𝑀-augmenting path

starting from 𝑢′.

This is a recursive problem

starting at the vertex 𝑢′.

If the recursion succeeds,

we have an augmenting path for 𝑢.

– We start with an unmatched vertex, say, 𝑢.

■ Our goal is to find an 𝑀-augmenting path starting from 𝑢.

– Consider each neighbor of 𝑢, say, 𝑣.

𝑢

𝑣 𝑢′

Then, the goal becomes finding

an 𝑀-augmenting path

starting from 𝑢′.

This is a recursive problem

starting at the vertex 𝑢′.

If it fails, we go back to 𝑢,

and continue to examine the next neighbor

until all its neighbors have been examined.

■ To describe the algorithm, let’s assume the following.

■ The graph is represented by adjacency lists.

■ For each vertex 𝑣,

let match[𝑣] denote the vertex to which 𝑣 is matched.

– match 𝑣 = −1 if 𝑣 is unmatched.

The DFS-like Recursive Algorithm

■ The DFS-like recursive algorithm goes as follows.

Procedure Aug-Path(𝑢)

1. Mark 𝑢 as visited.

2. For each neighbor 𝑣 of 𝑢, do.

• If 𝑣 is unmatched, or,

if match[𝑣] is unvisited and Aug-Path(match[𝑣]) is true, then

a. Set match 𝑢 = 𝑣 and match 𝑣 = 𝑢. // match 𝑢 with 𝑣

b. Return true.

3. Return false. 𝑢
𝑣 match 𝑣

Augmenting path

from match 𝑣 is

found.

The Augmenting Path Algorithm

for Bipartite Graphs

■ Let 𝐺 = (𝑉, 𝐸) be the input bipartite graph and 𝑀 a matching for 𝐺.

■ The algorithm goes as follows.

The Augmenting Path Algorithm for Bipartite Graphs

The Augmenting Path Algorithm (for Bipartite Graphs).

1. Mark all the vertices as unvisited.

2. For each unmatched vertex, say, 𝑢, do

• If Aug-Path(𝑢) returns true, then report “Yes.”

3. Report “No.”

■ Since each vertex is visited at most once and each edge is examined

at most twice by the procedure Aug-Path(),

– The algorithm runs in 𝑂 𝑛 +𝑚 time.

■ It is clear that, if Aug-Path(𝑢) returns true,

then an 𝑀-augmenting path starting at 𝑢 is found.

■ To prove the correctness of the algorithm,

it remains to prove that,

– There exists no 𝑀-augmenting path in the graph when the

algorithm reports “No.”

The Augmenting Path Algorithm for Bipartite Graphs

■ To prove the correctness of the algorithm,

it remains to prove that,

– There exists no 𝑀-augmenting path in the graph when the

algorithm reports “No.”

■ We will prove that, if the algorithm reports “No,”

then 𝐺 has a vertex cover 𝐶 of size |𝑀|.

– Since 𝐶 ≥ 𝑀′ holds for all matching 𝑀′ for 𝐺,

this will imply that 𝑀 is a maximum matching for 𝐺.

The Augmenting Path Algorithm for Bipartite Graphs

It takes at least one vertex

to cover each edge in 𝑀.

■ Let 𝐴 and 𝐵 be the two partite sets of 𝐺.

– Let 𝑈 be the set of unmatched vertices in 𝐴.

– Let 𝑆 be the vertices in 𝐴 that are marked as visited.

– Let 𝑇 be the set of vertices in 𝐵 that are matched to 𝑆 ∖ 𝑈 by 𝑀.

Some Notations

𝑈 𝑆

𝐴

𝐵

𝑇

𝐴 ∖ 𝑆

Theorem 3.

If the Augmenting Path Algorithm reports “No,” then

the set 𝐶 ≔ 𝐴 ∖ 𝑆 ∪ 𝑇 is a vertex cover for 𝐺 with size 𝑀.

𝑈 𝑆

𝐴

𝐵

𝑇

𝐴 ∖ 𝑆

Note that, this is also a constructive proof

for the König-Egeváry theorem.

■ For each 𝑣 ∈ 𝑆,

– There is an 𝑀-alternating path that starts at some 𝑢 ∈ 𝑈 and

ends at 𝑣 with a matched edge in 𝑀.

Observation 1.

𝑈 𝑆

𝐴

𝐵

𝑇

𝐴 ∖ 𝑆

Since 𝑣 is marked visited,

it is visited by a recursion call that

originates from some 𝑢 ∈ 𝑈.

■ There exists no edge between 𝑆 and 𝐵 ∖ 𝑇.

– By the way 𝑆 is defined, there exists no edge between 𝑆 and

the matched vertices in 𝐵.

– If there exists an edge between 𝑆 and some unmatched vertex in 𝐵,

it will be an augmenting path.

Observation 2.

𝑈 𝑆

𝐴

𝐵

𝑇

𝐴 ∖ 𝑆

If so, that matched vertex

should be classified in 𝑇.

A contradiction since

the algorithm reports “No.”

Theorem 3.

If the Augmenting Path Algorithm reports “No,” then

the set 𝐶 ≔ 𝐴 ∖ 𝑆 ∪ 𝑇 is a vertex cover for 𝐺 with size 𝑀.

𝑈 𝑆

𝐴

𝐵

𝑇

𝐴 ∖ 𝑆

■ The edges between 𝑆 and 𝑇 can be covered by 𝑇.

■ By Observation 2, the remaining edges can be covered by 𝐴 ∖ 𝑆.

■ Hence, 𝐶 is a vertex cover for 𝐺.

Concluding Notes

■ In this lecture,

we have seen an 𝑂 𝑛𝑚 = 𝑂(𝑛3) algorithm for this problem.

■ The best algorithm for this problem is the Hopcroft-Karp algorithm,

which runs in 𝑂 𝑛𝑚 = 𝑂 𝑛2.5 .

Best Algorithm for the Maximum Bipartite Matching

■ The best algorithm for this problem is the Hopcroft-Karp algorithm,

which runs in 𝑂 𝑛𝑚 = 𝑂 𝑛2.5 .

– The idea is to perform a BFS simultaneously from all unmatched

vertices in one partite set to form alternating layers

until some unmatched vertices in the other partite set is met.

– Then a layer-guided DFS is used to construct

a maximal set of vertex-disjoint shortest augmenting paths.

– It is guaranteed that, only 𝑂 𝑛 rounds are needed before the

maximum matching is computed.

The Hopcroft-Karp Algorithm

■ For general graphs, a maximum matching can be computed

by Edmonds Blossom algorithm in 𝑂 𝑛2𝑚 = 𝑂(𝑛4) time.

– It is a beautiful algorithm.

■ The best (and more complicated) algorithm, due to Micali and Vazirani,

solves this problem in 𝑂 𝑛𝑚 = 𝑂 𝑛2.5 time.

Maximum Matching in General Graphs

