Combinatorial Mathematics

Mong-Jen Kao (5 £§8)

Monday 18:30 — 20:20

Outline

m The Weak-Duality between Matching and Cover

m The Hungarian Algorithm for Weighted Bipartite Matching
- General Properties
- Simple 0(n*)-time implementation

- Sketch of 0(n3)-time implementation

m Concluding Notes

- Maximum Weight Matching in General Graphs

The Weak Duality between

Maximum Matching & Minimum Cover

The minimum-weight vertex cover is always no smaller than the maximum-weight matching.

The Maximum-Weight Matching Problem

m Input:

- Agraph ¢ = (V,E) with edge weight w,,,, for all (u,v) € E.

m Output :

- A matching M € E that has the maximum weight among
all possible matchings in G.

m Thatis, X.ecyWe = X cyr We holds for all matching M* in G.

The Minimum-Weight Vertex Cover Problem

m Input:

- Agraph ¢ = (V,E) with edge weight w,,,, for all (u,v) € E.

e

.

m Definition. ((Weighted) Vertex Cover)

- Alabel (function) y : V — R is a vertex cover for G, if

Yu + Yy = wy,, holds forall (u,v) € E.

- w) = zyv Is defined to be the weight of y.

vev

N

/

The Minimum-Weight Vertex Cover Problem

m Input:

- Agraph ¢ = (V,E) with edge weight w,,,, for all (u,v) € E.

m Output :

- Avertex cover y for G that has the minimum weight among
all possible vertex covers for G.

m Thatis, Y,cy ¥y < X,ev Yy holds all vertex cover y’ for G.

Lemma 1. (Weak-Duality between Matching and Vertex Cover)

Let G = (V,E) be a graph with edge weight w, for all e € E,
M be a matching, and y be a vertex cover for G.

Then, w(y) = w(M), i.e., ZV S Z .

vev eeM

m The proof for Lemma 1 is straightforward.

- Since the endpoints of edges in M are distinct, we obtain

23’1} > 2 O +) = Zwe-

VEV (u,v)eEM eeM

The weight of a vertex cover is always at least the weight of a matching.

Remarks.

m Lemma 1 implies that,

- Ifw(y) = w(M) holds for some M and y, then
they are both optimal.

- In this case,
we say that M and y witnesses the optimality of each other.

m The duality between matching and cover can appear in different forms
for different problem models.

- In this lecture, we examine the case on edge-weighted graphs.

The Weighted Matching Problem

In Bipartite Graphs

The Maximum Weight Bipartite Matching Problem

m Input:

- Abipartite graph ¢ = (V, E) with partite sets A and B and
edge weight w; ; e Rfori € 4,j € B.

m Output :

- A matching M € E that has the maximum weight among
all possible matchings in G.

In the following, we consider the problem in bipartite graphs.

Assumptions

m Without loss of generality, we may assume that...
- |A| = |B|, and G is a complete bipartite graph.

m If not, we add redundant vertices and
edges with sufficiently small weight to make it so.

m For example, the weight n = rrleigl w, — 1 will do.
e

Add redundant vertices and edges,

Assumptions so that |A’| = |B’|, and G’ is complete bipartite.
N
G G’ New edges
have weight

n = minw, — 1.

: eeq J

m Without loss of generality, we may assume that...

|A| = |B|, and G is a complete bipartite graph.

If not, we add redundant vertices and

edges with sufficiently small weight to make it so.

For example, the weight 7 := minw, — 1 will do.

eeq

Since n < minw,,

eeaq

It IS never better to replace an existing edge with a redundant edge.

NTToo——

-

-

Hence, a maximum weight matching in G corresponds to
a maximum weight matching in the new graph G’, and vice versa.

~

/

Assumptions

m In conclusion, we may assume that
- |A]l = |B],

- G Iscomplete bipartite, and

- The goal is to compute a maximum weight perfect matching,

l.e., a maximum-weight matching such that
every vertex in the graph is matched.

Remark.

m The considered problem is also equivalent to the minimum weight

perfect matching problem.

- When a minimum welight perfect matching is sought,

then we take w;; = —w;;

and solve the maximum weight perfect matching problem.

A minimum weight perfect matching w.r.t. w is
a maximum weight perfect matching w.r.t. w’, and vice versa.

The Hungarian Algorithm

for Weighted Bipartite Matching

The Hungarian algorithm solves the problem
via Primal-Duality of matching and cover.

The Hungarian Algorithm

m The algorithm starts with a trivial M and y.

- In each iteration,
the algorithm either improves M or y until their weights are equal.

m The algorithm starts with a trivial M and y.

- In each iteration,
the algorithm either improves M or y until their weights are equal.

The best vertex cover }

[The best matching

w(M,) w(M;) w(M,)

> [/ >

M M, M;

w(y1) w(¥o)

&, &,

|
|
M*iy*

The Hungarian Algorithm

m The algorithm starts with a trivial M and y.

- In each iteration,
the algorithm either improves M or y until their weights are equal.

m We keep improving M,
until it becomes unclear how M can be further improved.

m Thenitis guaranteed that,
there is a clear way to improve y.

The Hungarian Algorithm

m The Hungarian algorithm solves the weighted bipartite matching

problem in 0(n?) time.

- We will first introduce the algorithm framework, which can be
implemented in a simple way to run in 0(n*) time.
- Then we describe the 0(n®) implementation of the algorithm.

m It's more sophisticated, but
can still be implemented in a nice and clean way.

Key Notions and Properties

Equality Subgraph G,

m Let y be a vertex cover for the input graph G.
- Define the equality subgraph G, = (V, E,) to be the graph with
m VertexsetV

m Edge set
By = { o)t a3 =W)

Intuitively, two vertices u and v are connected in G,, if and only if

the weight y uses to cover the edge (u, v) is the least possible.

Uy Uy A
8
G 2 8 Gy
18
B
(2 v,
12 2
Yu, =6, Yy, =6, m If there exists a perfect matching,
Yo, =12, y, =2, say, M, in G,

then w(M) = w(y) must hold, and
both y and M are optimal for G.

The Goal — Looking for a Perfect Matching in G,

m If we have a perfect matching for the equality subgraph G,,,
then w(M) = w(y) must hold,

and both M and y are optimal by Lemma 1.

- Hence, it suffices to come up with a v,
such that G, has a perfect matching.

- How do we make this happen?

The Goal — Looking for a Perfect Matching in G,

m Suppose that we have a vertex cover y and a matching M
in the equality graph G,,.

- Let U € A be the set of unmatched vertices in A

and U’ a subset of U.
- Explore for M-augmenting paths for vertices in U’ in G,,.
m If found, then the size of M can be increased by 1.

m If not...

- Consider a set U’ of unmatched vertices.

If there exists no M-augmenting path for U’ in G,,, then...

m Let S be the set of vertices in A that are reachable from U’
via M-alternating paths.

m Let T be the set of vertices to which vertices in S\U' are
matched by M.

Observations

m Since |U'| > 0, it follows that |S| > |T]|.

m By the definition of S and T, there is no edge between S and B\T In G,,.

- In order to form an augmenting path for U’,
there has to be at least one edge between them.

Adjusting the Cover y

m For such an edge (a, b) to appear in the equality graph G,,,
where a € S, b € B\T,

Yo + Yp Needs to be decreased by the amount of y, + y, —wg.

| \ N
/ 7 “ N | \ 7/ \
N N / \ \// X N N/ \
N N / \ Nl P J N \
N N / \ JZEN e 7N \
N / \ A - Ny, \ \
N\ N/ \ P \ [/ N\ \
N \ Ve 7 I N\ \ \
N S _1-7 \ N \ \
N /N 514 / N (AR N \
S\ 2 AN N N

‘ This suggests the following procedure for adjusting y.

m Define

€= ggg}(Yd'+fo"‘Vab) :

bEB\T

€ Is the minimum slack of
the edges between S and B\T.

m Observe that, if we

- Decrease y, by € for all a € S,

- Increase y, by eforall b €T, The resulting y remains a valid
vertex cover for G.

T :
More vertices can be
+€ reached from U’
m Then, via alternating paths.

- At least one edge between S and B\T will appear in G,,.

- Both the edges between S and T and All the matched edges

the edges between A\S and B\T are unaffected. in M remain in G,

These edges play no role in M.
So, we don't care.

m We lose the edges between A\S and T. ﬁ

The Adjusting Procedure on y w.r.t. U’

m Define

€= ggg}(Yd'+ﬁyb"‘Vab) :

bEB\T

m If we decrease y, by € for all a € S and increase y, by e forall b € T,
then,

-y remains a vertex cover for G.
- The edges in M remain in G,.

- More vertices can be reached from U’ via alternating paths.

m Since |S| > |T|, we know that w(y) is strictly decreased by € - |U’|.

Looking for an Augmenting Path in G,

m When y Is adjusted,
at least one edge between S and B\T appears anew in G,,.
m Then, we continue to explore for M-augmenting paths for U’.
- If found, the size of M can be increased by 1.

- If not, we repeat the above procedure and adjust y
until an M-augmenting path is found for some vertex in U’.

Description of the Algorithm

The Hungarian Algorithm

= maxw
Vv beh v,b

m The algorithm starts with M = {@} and y defined as v
(:
Max wyp , ifv € A,
Yy = X
L 0, ifv € B. 0 0 0

It is easy to verify that
the initial y is a feasible

vertex cover for G.
L

m Repeat the following, until |M| = n.
- Pick an unmatched vertex v.

- Repeat the following, until an M-augmenting path P for v in G, is found.

m S < vertices in 4, reachable from v via M-alternating paths in G,,.

T «— vertices in B, to which vertices in S\{v} are matched by M.

m Compute € = aESI,r}JlélB\T (ya + vy — Wa’b).

Decrease y,, by € for all v € § and increase y,, by e forall v € T.
- Use P to match v and increase |M| by 1.

m Output M and y.

m The algorithm starts with a trivial M and y.

- In each iteration,
the algorithm either improves M or y until their weights are equal.

The best vertex cover }

[The best matching

w(M,) w(M;) w(M,)

> [/ >

M M, M;

w(y1) w(¥o)

&, &,

|
|
M*iy*

Correctness of the Algorithm

m By the previous observation, when an M-augmenting path is not

found, the current y can be improved, and |T| strictly increases.

- Since T € B, an augmenting path can be found
in O(|B|) = 0(n) number of updates on y.

- Hence, the size of M can be increased until |M| = n.

In this case, M Is a perfect matching in G,,, and
both M and y are optimal.

Time Complexity of the Algorithm

m It takes n iterations to compute a perfect matching.
- For each of the iteration, y is updated 0(n) times.

- Intotal, it takes 0(n?) updates on M and y before the algorithm
terminates.

m If we use a straightforward way for updating y in 0(n?) time,
then the algorithm takes 0(n*) time.

- Later we will see that, the Hungarian algorithm can be
implemented to run in 0(n®) time.

Simple 0(n*) Time Implementation

lungarian Algorithm in 0(n*) Time.

m If we use the maximum bipartite matching algorithm from Program

Assignment #1, then the implementation is very simple, done as follows.

m For each unmatched vertex u € A, do the following.
1. Mark all vertices as unvisited.

2. Repeat the following,
until the procedure Aug-Path(u) on G, = (V, E,) returns true.

m Adjusty.

m Remark all vertices as unvisited.

lungarian Algorithm in 0(n*) Time.

m Since the Procedure Aug-Path() takes 0(n?) time,
this implementation takes 0(n*) time.

m Note that, we don’t need to construct Gy .

- It suffices to traverse only tight edges during DFS or BFS.

m Also note that, the set S and T needed to update y is already
given by the information stored during the calls to Aug-Path()
(i.e., DFS or BFS).

Just need to carefully figure it out.

Sketch of

the 0(n?) Time Implementation

lungarian Algorithm in 0(n3) Time.

m Consider the algorithm framework in P.37.
To make the algorithm run in 0(n3) time, it is crucial that each iteration

needs to be done in 0(n?) time.

- Since DFS or BFS already takes 0(n?) time, it is important to continue
from the currently unfinished exploration each time when y is updated,

rather than restarting a new traversal.

- Since y can be updated 0(n) times,
the computation of € needs to be done in 0(n) time.

Computing € in O(n) Time \ o N

(N N
\\\\\ \\/ \\\ S . \\
N \\\ \\/t: \\\\\\\:\\\ \\\
\ /) B Se N
\\ N \\\\: ~ \\:\\\\
N /)(\ \\ \\::t\\\\\\\\
. N ﬁ"v__\r \\\\\\\\\\
m Recallthat e= min _ (y, +yp — Wap)- T (e © @ ~®
aeEs, bEB\T ’ b

- To speed up the computation, we can define for each b € B\T
a slack variable

£(b) := min (yo + ¥y — Wayp) -
- Then e can be computed in 0(n) time when needed, i.e.,
e = min €(b) .

bEB\T

- The total time we spent for computing e in each iteration is 0(n?).

Computing € in O(n) Time

i
< Y e \\\\\\
N / \ / \ N\ \\
\ // \\ / LN AN
N \ 4 N
/>\\ \\ / ’) : :
- Define for each b € B\T a slack variable e © o
£(b) = min (Yo + yp — Way) - B\T

- The values ¢(b) for all b € B\T need to be updated,
each time when a new vertex is added to the set S during DFS or BFS.

m This can be done in 0(n) time for each of such updates.

m The total time it takes to update the values of £(b)
in each iteration is 0(n?).

Concluding Notes

Maximum Weight Matching in Bipartite Graphs

m In this lecture, we introduced the Hungarian algorithm that solves the
maximum weight matching and minimum weight vertex cover

problems in bipartite graphs.

m The algorithm is also a constructive proof on the strong duality
between matching and cover in bipartite graphs.

- Thatis, w(M*) = w(y*) must hold for any bipartite graph,
whereas M* and y* are the optimal matching and vertex cover.

Maximum Weight Matching in General Graphs

m Itis easy to see that, for general graphs,
we do not have the strong duality between matching and vertex cover.

- There are simple examples for which w(M™*) < w(y*).

m |n fact, computing a minimum weight vertex cover in general graphs
IS an NP-hard problem.

Maximum Weight Matching in General Graphs

m However, strong duality still exists between matching and some
combinatorial object, and it leads to a polynomial time algorithm.

m The maximum weight matching in general graphs can be computed
by the Edmonds’ Path-Tree-Flower algorithm in 0(n?m) = 0(n*) time.

— The running time can be improved to O(nmlogn) = 0(n3logn).

- Itis a generalization of the Blossom algorithm.

