
Combinatorial Mathematics

Mong-Jen Kao (高孟駿)

Monday 18:30 – 20:20



Outline

■ The Weak-Duality between Matching and Cover

■ The Hungarian Algorithm for Weighted Bipartite Matching

– General Properties

– Simple 𝑂 𝑛4 -time implementation

– Sketch of 𝑂 𝑛3 -time implementation

■ Concluding Notes

– Maximum Weight Matching in General Graphs



The Weak Duality between 

Maximum Matching & Minimum Cover

The minimum-weight vertex cover is always no smaller than the maximum-weight matching.



■ Input :

– A graph 𝐺 = (𝑉, 𝐸) with edge weight 𝑤𝑢,𝑣 for all (𝑢, 𝑣) ∈ 𝐸.

■ Output : 

– A matching 𝑀 ⊆ 𝐸 that has the maximum weight among 

all possible matchings in 𝐺.

■ That is,  σ𝑒∈𝑀𝑤𝑒 ≥ σ𝑒∈𝑀′𝑤𝑒 holds for all matching 𝑀′ in 𝐺.

The Maximum-Weight Matching Problem



The Minimum-Weight Vertex Cover Problem

■ Input :

– A graph 𝐺 = (𝑉, 𝐸) with edge weight 𝑤𝑢,𝑣 for all (𝑢, 𝑣) ∈ 𝐸.

■ Definition. ((Weighted) Vertex Cover)

– A label (function)  𝑦 ∶ 𝑉 ⟶ ℝ is a vertex cover for 𝐺, if

𝑦𝑢 + 𝑦𝑣 ≥ 𝑤𝑢,𝑣 holds for all 𝑢, 𝑣 ∈ 𝐸.

– is defined to be the weight of 𝑦.𝑤 𝑦 ≔ 

𝑣∈𝑉

𝑦𝑣



■ Input :

– A graph 𝐺 = (𝑉, 𝐸) with edge weight 𝑤𝑢,𝑣 for all (𝑢, 𝑣) ∈ 𝐸.

■ Output : 

– A vertex cover 𝑦 for 𝐺 that has the minimum weight among 

all possible vertex covers for 𝐺.

■ That is,  σ𝑣∈𝑉 𝑦𝑣 ≤ σ𝑣∈𝑉 𝑦𝑣
′ holds all vertex cover 𝑦′ for 𝐺.

The Minimum-Weight Vertex Cover Problem



■ The proof for Lemma 1 is straightforward.

– Since the endpoints of edges in 𝑀 are distinct, we obtain



𝑣∈𝑉

𝑦𝑣 ≥ 

𝑢,𝑣 ∈𝑀

𝑦𝑢 + 𝑦𝑣 ≥ 

𝑒∈𝑀

𝑤𝑒 .

Lemma 1. (Weak-Duality between Matching and Vertex Cover)

Let 𝐺 = 𝑉, 𝐸 be a graph with edge weight 𝑤𝑒 for all 𝑒 ∈ 𝐸, 

𝑀 be a matching, and 𝑦 be a vertex cover for 𝐺. 

Then, 𝑤 𝑦 ≥ 𝑤 𝑀 , i.e., 


𝑣∈𝑉

𝑦𝑣 ≥ 

𝑒∈𝑀

𝑤𝑒 .

The weight of a vertex cover is always at least the weight of a matching.



■ Lemma 1 implies that,

– If 𝑤 𝑦 = 𝑤 𝑀 holds for some 𝑀 and 𝑦, then 

they are both optimal. 

– In this case, 

we say that 𝑀 and 𝑦 witnesses the optimality of each other.

■ The duality between matching and cover can appear in different forms 

for different problem models.

– In this lecture, we examine the case on edge-weighted graphs.

Remarks.



The Weighted Matching Problem

in Bipartite Graphs



■ Input :

– A bipartite graph 𝐺 = (𝑉, 𝐸) with partite sets 𝑨 and 𝑩 and

edge weight 𝑤𝑖,𝑗 ∈ ℝ for 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵.

■ Output : 

– A matching 𝑀 ⊆ 𝐸 that has the maximum weight among 

all possible matchings in 𝐺.

The Maximum Weight Bipartite Matching Problem

In the following, we consider the problem in bipartite graphs.



■ Without loss of generality, we may assume that… 

– |𝐴| = |𝐵|, and 𝐺 is a complete bipartite graph. 

■ If not, we add redundant vertices and 

edges with sufficiently small weight to make it so.

■ For example, the weight  𝜂 ≔ min
𝑒∈𝐺

𝑤𝑒 − 1 will do.

Assumptions



Assumptions

𝐴

𝐵

2

8

𝐴′ 𝐵′

Add redundant vertices and edges, 

so that 𝐴′ = 𝐵′ , and 𝐺′ is complete bipartite.

New edges

have weight 

𝜂 ≔ min
𝑒∈𝐺

𝑤𝑒 − 1.

𝐺′𝐺



■ Without loss of generality, we may assume that… 

– |𝐴| = |𝐵|, and 𝐺 is a complete bipartite graph. 

■ If not, we add redundant vertices and 

edges with sufficiently small weight to make it so.

■ For example, the weight  𝜂 ≔ min
𝑒∈𝐺

𝑤𝑒 − 1 will do.

■ Since 𝜂 < min
𝑒∈𝐺

𝑤𝑒,  

it is never better to replace an existing edge with a redundant edge.

Hence, a maximum weight matching in 𝐺 corresponds to 

a maximum weight matching in the new graph 𝐺′, and vice versa.



■ In conclusion, we may assume that

– 𝑨 = 𝑩 ,

– 𝐺 is complete bipartite, and

– The goal is to compute a maximum weight perfect matching,

i.e., a maximum-weight matching such that 

every vertex in the graph is matched.

Assumptions



■ The considered problem is also equivalent to the minimum weight 

perfect matching problem.

– When a minimum weight perfect matching is sought, 

then we take  𝑤𝑖,𝑗
′ = −𝑤𝑖,𝑗

and solve the maximum weight perfect matching problem.

Remark.

A minimum weight perfect matching w.r.t. 𝑤 is 

a maximum weight perfect matching w.r.t. 𝑤′, and vice versa.



The Hungarian Algorithm

for Weighted Bipartite Matching

The Hungarian algorithm solves the problem 

via Primal-Duality of matching and cover.



■ The algorithm starts with a trivial 𝑀 and 𝑦.

– In each iteration, 

the algorithm either improves 𝑀 or 𝑦 until their weights are equal.

The Hungarian Algorithm

𝑀0

𝑤 𝑀0

𝑀1

𝑤 𝑀1

𝑦0

𝑤 𝑦0



■ The algorithm starts with a trivial 𝑀 and 𝑦.

– In each iteration, 

the algorithm either improves 𝑀 or 𝑦 until their weights are equal.

𝑀0

𝑤 𝑀0

𝑀1

𝑤 𝑀1

𝑀2

𝑤 𝑀2

𝑦0

𝑤 𝑦0

𝑦1

𝑤 𝑦1
𝑴∗ 𝒚∗

The best matching
The best vertex cover



■ The algorithm starts with a trivial 𝑀 and 𝑦.

– In each iteration, 

the algorithm either improves 𝑀 or 𝑦 until their weights are equal.

■ We keep improving 𝑀, 

until it becomes unclear how 𝑀 can be further improved.

■ Then it is guaranteed that, 

there is a clear way to improve 𝑦.

The Hungarian Algorithm



■ The Hungarian algorithm solves the weighted bipartite matching 

problem in 𝑂 𝑛3 time.

– We will first introduce the algorithm framework, which can be 

implemented in a simple way to run in 𝑂 𝑛4 time.

– Then we describe the 𝑂 𝑛3 implementation of the algorithm.

■ It’s more sophisticated, but 

can still be implemented in a nice and clean way.

The Hungarian Algorithm



Key Notions and Properties



Equality Subgraph 𝐺𝑦

■ Let 𝑦 be a vertex cover for the input graph 𝐺.

– Define the equality subgraph 𝐺𝑦 = (𝑉, 𝐸𝑦) to be the graph with

■ Vertex set 𝑉

■ Edge set 
𝐸𝑦 ≔ 𝑢, 𝑣 ∶ 𝑦𝑢 + 𝑦𝑣 = 𝑤𝑢,𝑣 .

Intuitively, two vertices 𝑢 and 𝑣 are connected in 𝐺𝑦 if and only if 

the weight 𝑦 uses to cover the edge (𝑢, 𝑣) is the least possible.



■ If there exists a perfect matching, 

say, 𝑀, in 𝐺𝑦,

then 𝑤 𝑀 = 𝑤 𝑦 must hold, and

both 𝑦 and 𝑀 are optimal for 𝐺.

𝑦𝑢1 = 6, 𝑦𝑢2 = 6,

𝑦𝑣1 = 12, 𝑦𝑣2 = 2,

2

𝑣1 𝑣2

𝑢1 𝑢2

8

18

8

𝟏𝟐

𝟔

𝟐

𝟔

𝐺 𝐺𝑦

𝐴

𝐵



The Goal – Looking for a Perfect Matching in 𝐺𝑦

■ If we have a perfect matching for the equality subgraph 𝐺𝑦, 

then 𝑤 𝑀 = 𝑤 𝑦 must hold, 

and both 𝑀 and 𝑦 are optimal by Lemma 1.

– Hence, it suffices to come up with a 𝑦, 

such that 𝐺𝑦 has a perfect matching.

– How do we make this happen?



The Goal – Looking for a Perfect Matching in 𝐺𝑦

■ Suppose that we have a vertex cover 𝑦 and a matching 𝑀

in the equality graph 𝐺𝑦.

– Let 𝑈 ⊆ 𝐴 be the set of unmatched vertices in 𝐴

and 𝑈′ a subset of 𝑈.

– Explore for 𝑀-augmenting paths for vertices in 𝑈′ in 𝐺𝑦.

■ If found, then the size of 𝑀 can be increased by 1.

■ If not…



– Consider a set 𝑈′ of unmatched vertices. 

If there exists no 𝑀-augmenting path for 𝑈′ in 𝐺𝑦, then…

■ Let 𝑆 be the set of vertices in 𝐴 that are reachable from 𝑈′

via 𝑀-alternating paths.

■ Let 𝑇 be the set of vertices to which vertices in 𝑆\𝑈′ are 

matched by 𝑀.

𝐺𝑦

𝑈′ 𝑆
𝐴

𝐵
𝑇



■ Since 𝑈′ > 0, it follows that 𝑆 > 𝑇 . 

■ By the definition of 𝑆 and 𝑇, there is no edge between 𝑆 and 𝐵\T in 𝐺𝑦.

– In order to form an augmenting path for 𝑈′,

there has to be at least one edge between them.

Observations

𝑈′ 𝑆
𝐴

𝐵
𝑇



■ For such an edge (𝑎, 𝑏) to appear in the equality graph 𝐺𝑦, 

where 𝑎 ∈ 𝑆, 𝑏 ∈ 𝐵\T, 

𝑦𝑎 + 𝑦𝑏 needs to be decreased by the amount of  𝑦𝑎 + 𝑦𝑏 −𝑤𝑎,𝑏.

Adjusting the Cover 𝑦

𝒃

This suggests the following procedure for adjusting 𝑦.

𝑈′ 𝑆
𝐴

𝐵
𝑇

𝒂



■ Define 
𝜖 = min

𝑎∈𝑆,
𝑏∈𝐵\T

𝑦𝑎 + 𝑦𝑏 − 𝑤𝑎,𝑏 .

■ Observe that, if we

– Decrease 𝑦𝑎 by 𝜖 for all 𝑎 ∈ 𝑆,

– Increase 𝑦𝑏 by 𝜖 for all 𝑏 ∈ 𝑇, 

+𝝐

−𝝐

𝜖 is the minimum slack of 

the edges between 𝑆 and 𝐵\T.

The resulting 𝑦 remains a valid 

vertex cover for 𝐺.

𝑈′ 𝑆
𝐴

𝐵
𝑇



■ Then, 

– At least one edge between 𝑆 and 𝐵\T will appear in 𝐺𝑦.

– Both the edges between 𝑆 and 𝑇 and 

the edges between 𝐴\S and 𝐵\T are unaffected.

■ We lose the edges between 𝐴\S and 𝑇.

More vertices can be 

reached from 𝑈′

via alternating paths.

All the matched edges 

in 𝑀 remain in 𝐺𝑦.

These edges play no role in 𝑀.

So, we don’t care.

+𝝐

−𝝐

𝑈′ 𝑆
𝐴

𝐵
𝑇



■ Define 
𝜖 = min

𝑎∈𝑆,
𝑏∈𝐵\T

𝑦𝑎 + 𝑦𝑏 − 𝑤𝑎,𝑏 .

■ If we decrease 𝑦𝑎 by 𝜖 for all 𝑎 ∈ 𝑆 and increase 𝑦𝑏 by 𝜖 for all 𝑏 ∈ 𝑇,

then, 

– 𝑦 remains a vertex cover for 𝐺.

– The edges in 𝑀 remain in 𝐺𝑦.

– More vertices can be reached from 𝑈′ via alternating paths.

■ Since 𝑆 > |𝑇|, we know that 𝑤 𝑦 is strictly decreased by 𝜖 ⋅ 𝑈′ .

The Adjusting Procedure on 𝑦 w.r.t. 𝑈′



■ When 𝑦 is adjusted, 

at least one edge between 𝑆 and 𝐵\T appears anew in 𝐺𝑦.

■ Then, we continue to explore for 𝑀-augmenting paths for 𝑈′.

– If found, the size of 𝑀 can be increased by 1.

– If not, we repeat the above procedure and adjust 𝑦

until an 𝑀-augmenting path is found for some vertex in 𝑈′.

Looking for an Augmenting Path in 𝐺𝑦



Description of the Algorithm



■ The algorithm starts with 𝑀 = ∅ and 𝑦 defined as

𝑦𝑣 ≔ ൞

max
𝑏∈𝐵

𝑤𝑣,𝑏 , if 𝑣 ∈ 𝐴,

0, if 𝑣 ∈ 𝐵.

The Hungarian Algorithm

It is easy to verify that 

the initial 𝑦 is a feasible 

vertex cover for 𝐺.

𝑣

𝑦𝑣 ≔ max
𝑏∈𝐵

𝑤𝑣,𝑏

0 0 0



■ Repeat the following, until 𝑀 = 𝑛.

– Pick an unmatched vertex 𝑣.

– Repeat the following, until an 𝑀-augmenting path 𝑃 for 𝑣 in 𝐺𝑦 is found.

■ 𝑆 ⟵ vertices in 𝐴, reachable from 𝑣 via 𝑀-alternating paths in 𝐺𝑦.

𝑇 ⟵ vertices in 𝐵, to which vertices in 𝑆\ 𝑣 are matched by 𝑀.

■ Compute  𝜖 = min
𝑎∈𝑆, 𝑏∈𝐵\T

𝑦𝑎 + 𝑦𝑏 − 𝑤𝑎,𝑏 .

Decrease 𝑦𝑣 by 𝜖 for all 𝑣 ∈ 𝑆 and increase 𝑦𝑣 by 𝜖 for all 𝑣 ∈ 𝑇.

– Use 𝑃 to match 𝑣 and increase 𝑀 by 1.

■ Output 𝑀 and 𝑦.



■ The algorithm starts with a trivial 𝑀 and 𝑦.

– In each iteration, 

the algorithm either improves 𝑀 or 𝑦 until their weights are equal.

𝑀0

𝑤 𝑀0

𝑀1

𝑤 𝑀1

𝑀2

𝑤 𝑀2

𝑦0

𝑤 𝑦0

𝑦1

𝑤 𝑦1
𝑴∗ 𝒚∗

The best matching
The best vertex cover



■ By the previous observation, when an 𝑀-augmenting path is not 

found, the current 𝑦 can be improved, and 𝑇 strictly increases.

– Since 𝑇 ⊆ 𝐵, an augmenting path can be found 

in 𝑂 𝐵 = 𝑂 𝑛 number of updates on 𝑦.

– Hence, the size of 𝑀 can be increased until 𝑀 = 𝑛.

In this case, 𝑀 is a perfect matching in 𝐺𝑦, and 

both 𝑀 and 𝑦 are optimal.

Correctness of the Algorithm



■ It takes 𝑛 iterations to compute a perfect matching.

– For each of the iteration, 𝑦 is updated 𝑂 𝑛 times.

– In total, it takes 𝑂 𝑛2 updates on 𝑀 and 𝑦 before the algorithm 

terminates.

■ If we use a straightforward way for updating 𝑦 in 𝑂 𝑛2 time, 

then the algorithm takes 𝑂 𝑛4 time.

– Later we will see that, the Hungarian algorithm can be 

implemented to run in 𝑂 𝑛3 time.

Time Complexity of the Algorithm



Simple 𝑂 𝑛4 Time Implementation



■ If we use the maximum bipartite matching algorithm from Program 

Assignment #1, then the implementation is very simple, done as follows.

■ For each unmatched vertex 𝑢 ∈ 𝐴, do the following.

1. Mark all vertices as unvisited.

2. Repeat the following, 

until the procedure Aug-Path(u) on 𝐺𝑦 = 𝑉, 𝐸𝑦 returns true.

■ Adjust 𝑦.

■ Remark all vertices as unvisited.

Hungarian Algorithm in 𝑂 𝑛4 Time.



■ Since the Procedure Aug-Path() takes 𝑂 𝑛2 time, 

this implementation takes 𝑂 𝑛4 time.

■ Note that, we don’t need to construct 𝐺𝑦.

– It suffices to traverse only tight edges during DFS or BFS.

■ Also note that, the set 𝑆 and 𝑇 needed to update 𝑦 is already 

given by the information stored during the calls to Aug-Path()

(i.e., DFS or BFS).

Hungarian Algorithm in 𝑂 𝑛4 Time.

Just need to carefully figure it out.



Sketch of 

the 𝑂 𝑛3 Time Implementation



■ Consider the algorithm framework in P.37.

To make the algorithm run in 𝑂 𝑛3 time, it is crucial that each iteration 

needs to be done in 𝑂 𝑛2 time.

– Since DFS or BFS already takes 𝑂 𝑛2 time, it is important to continue 

from the currently unfinished exploration each time when 𝑦 is updated, 

rather than restarting a new traversal.

– Since 𝑦 can be updated 𝑂 𝑛 times, 

the computation of 𝜖 needs to be done in 𝑂 𝑛 time.

Hungarian Algorithm in 𝑂 𝑛3 Time.



■ Recall that  𝜖 = min
𝑎∈𝑆, 𝑏∈𝐵\T

𝑦𝑎 + 𝑦𝑏 − 𝑤𝑎,𝑏 .

– To speed up the computation, we can define for each 𝑏 ∈ 𝐵\T

a slack variable 

ℓ 𝑏 ≔ min
𝑎∈𝑆

𝑦𝑎 + 𝑦𝑏 −𝑤𝑎,𝑏 .

– Then 𝜖 can be computed in 𝑂 𝑛 time when needed, i.e., 

𝜖 = min
𝑏∈𝐵\T

ℓ(𝑏) .

– The total time we spent for computing 𝜖 in each iteration is 𝑂 𝑛2 .

Computing 𝜖 in 𝑂 𝑛 Time

𝑆

𝑇
𝑏



– Define for each 𝑏 ∈ 𝐵\T a slack variable 

ℓ 𝑏 ≔ min
𝑎∈𝑆

𝑦𝑎 + 𝑦𝑏 −𝑤𝑎,𝑏 .

– The values ℓ 𝑏 for all 𝑏 ∈ 𝐵\T need to be updated, 

each time when a new vertex is added to the set 𝑆 during DFS or BFS.

■ This can be done in 𝑂 𝑛 time for each of such updates.

■ The total time it takes to update the values of ℓ 𝑏

in each iteration is 𝑂 𝑛2 . 

Computing 𝜖 in 𝑂 𝑛 Time
𝑆

𝐵\T



Concluding Notes



■ In this lecture, we introduced the Hungarian algorithm that solves the 

maximum weight matching and minimum weight vertex cover 

problems in bipartite graphs.

■ The algorithm is also a constructive proof on the strong duality 

between matching and cover in bipartite graphs.

– That is, 𝑤 𝑀∗ = 𝑤 𝑦∗ must hold for any bipartite graph, 

whereas 𝑀∗ and 𝑦∗ are the optimal matching and vertex cover.

Maximum Weight Matching in Bipartite Graphs



■ It is easy to see that, for general graphs, 

we do not have the strong duality between matching and vertex cover.

– There are simple examples for which 𝑤 𝑀∗ < 𝑤 𝑦∗ .

■ In fact, computing a minimum weight vertex cover in general graphs 

is an NP-hard problem.

Maximum Weight Matching in General Graphs

1

1

1



■ However, strong duality still exists between matching and some 

combinatorial object, and it leads to a polynomial time algorithm.

■ The maximum weight matching in general graphs can be computed 

by the Edmonds’ Path-Tree-Flower algorithm in 𝑂 𝑛2𝑚 = 𝑂 𝑛4 time. 

– The running time can be improved to 𝑂 𝑛𝑚 log 𝑛 = 𝑂 𝑛3 log 𝑛 .

– It is a generalization of the Blossom algorithm.

Maximum Weight Matching in General Graphs


