Combinatorial Mathematics

Mong-Jen Kao (高孟駿) Monday 18:30 – 20:20

Outline

- The Weak-Duality between Matching and Cover
- The Hungarian Algorithm for Weighted Bipartite Matching
 - General Properties
 - Simple $O(n^4)$ -time implementation
 - Sketch of $O(n^3)$ -time implementation
- Concluding Notes
 - Maximum Weight Matching in General Graphs

The Weak Duality between

Maximum Matching & Minimum Cover

The *minimum-weight vertex cover* is always *no smaller than the maximum-weight matching*.

The Maximum-Weight Matching Problem

Input :

- A graph G = (V, E) with edge weight $w_{u,v}$ for all $(u, v) \in E$.
- Output :
 - A matching $M \subseteq E$ that has the maximum weight among all possible matchings in *G*.
 - That is, $\sum_{e \in M} w_e \ge \sum_{e \in M'} w_e$ holds for all matching M' in G.

The Minimum-Weight Vertex Cover Problem

Input :

- A graph G = (V, E) with edge weight $w_{u,v}$ for all $(u, v) \in E$.

Definition. ((Weighted) Vertex Cover)

- A label (function) $y: V \rightarrow \mathbb{R}$ is a vertex cover for *G*, if

 $y_u + y_v \ge w_{u,v}$ holds for all $(u, v) \in E$.

$$- w(y) \coloneqq \sum_{v \in V} y_v$$
 is defined to be the weight of y.

The Minimum-Weight Vertex Cover Problem

Input :

- A graph G = (V, E) with edge weight $w_{u,v}$ for all $(u, v) \in E$.
- Output :
 - A vertex cover y for G that has the minimum weight among all possible vertex covers for G.
 - That is, $\sum_{v \in V} y_v \le \sum_{v \in V} y'_v$ holds all vertex cover y' for G.

Lemma 1. (Weak-Duality between Matching and Vertex Cover)

Let G = (V, E) be a graph with edge weight w_e for all $e \in E$, M be a matching, and y be a vertex cover for G.

Then, $w(y) \ge w(M)$, i.e., $\sum_{v \in V} y_v \ge \sum_{e \in M} w_e$.

- The proof for Lemma 1 is straightforward.
 - Since the endpoints of edges in *M* are distinct, we obtain

$$\sum_{v \in V} y_v \geq \sum_{(u,v) \in M} (y_u + y_v) \geq \sum_{e \in M} w_e.$$

The weight of a vertex cover is always at least the weight of a matching.

Remarks.

- Lemma 1 implies that,
 - If w(y) = w(M) holds for some M and y, then they are both optimal.
 - In this case,

we say that *M* and *y* witnesses the optimality of each other.

- The duality between matching and cover can appear in different forms for different problem models.
 - In this lecture, we examine the case on edge-weighted graphs.

The Weighted Matching Problem

in Bipartite Graphs

The Maximum Weight Bipartite Matching Problem

- Input :
 - A *bipartite* graph G = (V, E) with *partite sets* A *and* B and edge weight $w_{i,j} \in \mathbb{R}$ for $i \in A, j \in B$.
- Output :
 - A matching $M \subseteq E$ that has the maximum weight among all possible matchings in *G*.

In the following, we consider the problem in bipartite graphs.

Assumptions

- Without loss of generality, we may assume that...
 - |A| = |B|, and *G* is a complete bipartite graph.
 - If not, we add redundant vertices and edges with <u>sufficiently small weight</u> to make it so.
 - For example, the weight $\eta \coloneqq \min_{e \in G} w_e 1$ will do.

Assumptions

Add redundant vertices and edges,

so that |A'| = |B'|, and G' is complete bipartite.

Without loss of generality, we may assume that...

- |A| = |B|, and *G* is a complete bipartite graph.
 - If not, we add redundant vertices and edges with <u>sufficiently small weight</u> to make it so.
 - For example, the weight $\eta \coloneqq \min_{e \in G} w_e 1$ will do.
 - Since $\eta < \min_{e \in G} w_e$,

it is never better to replace an existing edge with a redundant edge.

Hence, a maximum weight matching in G corresponds to a maximum weight matching in the new graph G', and vice versa.

Assumptions

- In conclusion, we may assume that
 - |A| = |B|,
 - G is **complete bipartite**, and
 - The goal is to compute a *maximum weight <u>perfect matching</u>*,
 i.e., a maximum-weight matching such that every vertex in the graph is matched.

Remark.

- The considered problem is also equivalent to the minimum weight perfect matching problem.
 - When a minimum weight perfect matching is sought, then we take $w'_{i,j} = -w_{i,j}$ and solve the maximum weight perfect matching problem.

A minimum weight perfect matching w.r.t. w is a maximum weight perfect matching w.r.t. w', and vice versa.

The Hungarian Algorithm

for Weighted Bipartite Matching

The Hungarian algorithm solves the problem via Primal-Duality of matching and cover.

The Hungarian Algorithm

• The algorithm starts with a trivial M and y.

- In each iteration,

the algorithm either improves *M* or *y* until their weights are equal.

- The algorithm starts with a trivial *M* and *y*.
 - In each iteration,

the algorithm either improves *M* or *y* until their weights are equal.

The Hungarian Algorithm

- The algorithm starts with a trivial *M* and *y*.
 - In each iteration,

the algorithm either improves *M* or *y* until their weights are equal.

• We keep improving M,

until it becomes unclear how *M* can be further improved.

Then it is guaranteed that,
 there is a clear way to improve y.

The Hungarian Algorithm

- The Hungarian algorithm solves the weighted bipartite matching problem in $O(n^3)$ time.
 - We will first introduce the algorithm framework, which can be implemented in a simple way to run in $O(n^4)$ time.
 - Then we describe the $O(n^3)$ implementation of the algorithm.
 - It's more sophisticated, but can still be implemented in a nice and clean way.

Key Notions and Properties

Equality Subgraph G_y

• Let y be a vertex cover for the input graph G.

- Define the equality subgraph $G_y = (V, E_y)$ to be the graph with
 - Vertex set V

• Edge set
$$E_{y} \coloneqq \{ (u, v) : y_{u} + y_{v} = w_{u,v} \}.$$

Intuitively, two vertices u and v are connected in G_y if and only if the weight y uses to cover the edge (u, v) is <u>the least possible</u>.

$$y_{u_1} = 6, \qquad y_{u_2} = 6,$$

 $y_{v_1} = 12, \qquad y_{v_2} = 2,$

If there exists *a perfect matching*, say, *M*, in *G_y*,

then w(M) = w(y) must hold, and both y and M are optimal for G.

The Goal – Looking for a Perfect Matching in G_y

If we have a perfect matching for the equality subgraph G_y , then w(M) = w(y) must hold,

and both *M* and *y* are optimal by Lemma 1.

- Hence, it suffices to come up with a y, such that G_y has a perfect matching.
- How do we make this happen?

The Goal – Looking for a Perfect Matching in G_y

- Suppose that we have a vertex cover y and a matching M in the equality graph G_y .
 - Let $U \subseteq A$ be the set of unmatched vertices in Aand U' a subset of U.
 - Explore for *M*-augmenting paths for vertices in U' in G_{γ} .
 - If found, then the size of *M* can be increased by 1.
 - If not...

- Consider a set U' of unmatched vertices.

If there exists no *M*-augmenting path for U' in G_y , then...

- Let S be the set of vertices in A that are reachable from U' via M-alternating paths.
- Let *T* be the set of vertices to which vertices in $S \setminus U'$ are matched by *M*.

Observations

- Since |U'| > 0, it follows that |S| > |T|.
- By the definition of S and T, there is no edge between S and $B \setminus T$ in G_{γ} .
 - In order to form an augmenting path for U',
 there has to be at least one edge between them.

Adjusting the Cover *y*

■ For such an edge (a, b) to appear in the equality graph G_y , where $a \in S$, $b \in B \setminus T$,

 $y_a + y_b$ needs to be decreased by the amount of $y_a + y_b - w_{a,b}$.

This suggests the following procedure for adjusting y.

$$\epsilon = \min_{\substack{a \in S, \\ b \in B \setminus T}} (y_a + y_b - w_{a,b}) .$$

Observe that, if we

- Decrease y_a by ϵ for all $a \in S$,
- Increase y_b by ϵ for all $b \in T$,

 ϵ is the minimum slack of the edges between *S* and *B*\T.

The resulting y remains a valid vertex cover for G.

More vertices can be reached from *U'* via alternating paths.

- At least one edge between S and $B \setminus T$ will appear in G_{v} .
- Both the edges between S and T and
 the edges between A\S and B\T are unaffected.

All the matched edges in *M* remain in G_y .

We lose the edges between $A \setminus S$ and T.

These edges play no role in M. So, we don't care.

The Adjusting Procedure on y w.r.t. U'

Define

$$\epsilon = \min_{\substack{a \in S, \\ b \in B \setminus T}} (y_a + y_b - w_{a,b}) .$$

- If we decrease y_a by ϵ for all $a \in S$ and increase y_b by ϵ for all $b \in T$, then,
 - *y* remains a vertex cover for *G*.
 - The edges in *M* remain in G_y .
 - More vertices can be reached from U' via alternating paths.
- Since |S| > |T|, we know that w(y) is strictly decreased by $\epsilon \cdot |U'|$.

Looking for an Augmenting Path in G_y

• When y is adjusted,

at least one edge between S and $B \setminus T$ appears anew in G_{γ} .

- Then, we continue to explore for M-augmenting paths for U'.
 - If found, the size of *M* can be increased by 1.
 - If not, we repeat the above procedure and adjust y until an M-augmenting path is found for some vertex in U'.

Description of the Algorithm

The Hungarian Algorithm

• The algorithm starts with $M = \{\emptyset\}$ and y defined as

$$y_{v} \coloneqq \begin{cases} \max_{b \in B} w_{v,b} , & \text{if } v \in A, \\ 0, & \text{if } v \in B. \end{cases}$$

It is easy to verify that the initial y is a feasible vertex cover for G.

- Repeat the following, until |M| = n.
 - Pick an unmatched vertex v.
 - Repeat the following, until an *M*-augmenting path *P* for v in G_y is found.
 - $S \leftarrow$ vertices in A, reachable from v via M-alternating paths in G_y . $T \leftarrow$ vertices in B, to which vertices in $S \setminus \{v\}$ are matched by M.
 - Compute $\epsilon = \min_{a \in S, b \in B \setminus T} (y_a + y_b w_{a,b}).$

Decrease y_v by ϵ for all $v \in S$ and increase y_v by ϵ for all $v \in T$.

- Use *P* to match v and increase |M| by 1.
- Output M and y.

- The algorithm starts with a trivial *M* and *y*.
 - In each iteration,

the algorithm either improves *M* or *y* until their weights are equal.

Correctness of the Algorithm

- By the previous observation, when an *M*-augmenting path is not found, the current y can be improved, and |T| strictly increases.
 - Since $T \subseteq B$, an augmenting path can be found in O(|B|) = O(n) number of updates on y.
 - Hence, the size of *M* can be increased until |M| = n.

In this case, *M* is a perfect matching in G_y , and both *M* and *y* are optimal.

Time Complexity of the Algorithm

■ It takes *n* iterations to compute a perfect matching.

- For each of the iteration, y is updated O(n) times.
- In total, it takes $O(n^2)$ updates on *M* and *y* before the algorithm terminates.
- If we use a straightforward way for updating y in $O(n^2)$ time, then the algorithm takes $O(n^4)$ time.
 - Later we will see that, the Hungarian algorithm can be implemented to run in $O(n^3)$ time.

Simple $O(n^4)$ Time Implementation

Hungarian Algorithm in $O(n^4)$ Time.

- If we use the maximum bipartite matching algorithm from Program Assignment #1, then the implementation is very simple, done as follows.
- For each unmatched vertex $u \in A$, do the following.
 - 1. Mark all vertices as unvisited.
 - 2. Repeat the following,

until the procedure Aug-Path(u) on $G_y = (V, E_y)$ returns true.

- Adjust y.
- Remark all vertices as unvisited.

Hungarian Algorithm in $O(n^4)$ Time.

Since the Procedure Aug-Path() takes $O(n^2)$ time, this implementation takes $O(n^4)$ time.

• Note that, we don't need to construct G_{γ} .

- It suffices to traverse only tight edges during DFS or BFS.
- Also note that, the set S and T needed to update y is already given by the information stored during the calls to Aug-Path() (i.e., DFS or BFS).

Just need to carefully figure it out.

Sketch of

the $O(n^3)$ Time Implementation

Hungarian Algorithm in $O(n^3)$ Time.

- Consider the algorithm framework in P.37.
 To make the algorithm run in O(n³) time, it is crucial that each iteration needs to be done in O(n²) time.
 - Since DFS or BFS already takes $O(n^2)$ time, it is important to continue from the currently unfinished exploration each time when y is updated, rather than restarting a new traversal.
 - Since *y* can be updated *O*(*n*) times,
 the computation of *ε* needs to be done in *O*(*n*) time.

Computing ϵ in O(n) Time

- Recall that $\epsilon = \min_{a \in S, b \in B \setminus T} (y_a + y_b w_{a,b}).$
- S T b
- To speed up the computation, we can define for each $b \in B \setminus T$ a slack variable

$$\ell(b) \coloneqq \min_{a \in S} \left(y_a + y_b - w_{a,b} \right) \,.$$

- Then ϵ can be computed in O(n) time when needed, i.e.,

$$\epsilon = \min_{b \in B \setminus T} \ell(b) \; .$$

- The total time we spent for computing ϵ in each iteration is $O(n^2)$.

Computing ϵ in O(n) Time

- Define for each $b \in B \setminus T$ a slack variable

$$\ell(b) \coloneqq \min_{a \in S} \left(y_a + y_b - w_{a,b} \right) \,.$$

- The values $\ell(b)$ for all $b \in B \setminus T$ need to be updated, <u>each time</u> when a new vertex is added to the set *S* during DFS or BFS.
 - This can be done in O(n) time for each of such updates.
 - The total time it takes to update the values of $\ell(b)$ in each iteration is $O(n^2)$.

Concluding Notes

Maximum Weight Matching in Bipartite Graphs

- In this lecture, we introduced the Hungarian algorithm that solves the maximum weight matching and minimum weight vertex cover problems in bipartite graphs.
- The algorithm is also a constructive proof on the strong duality between matching and cover in bipartite graphs.
 - That is, w(M*) = w(y*) must hold for any bipartite graph,
 whereas M* and y* are the optimal matching and vertex cover.

Maximum Weight Matching in General Graphs

- It is easy to see that, for general graphs, we do not have the strong duality between matching and vertex cover.
 - There are simple examples for which $w(M^*) < w(y^*)$.

 In fact, computing a minimum weight vertex cover in general graphs is an NP-hard problem.

Maximum Weight Matching in General Graphs

- However, strong duality still exists between matching and some combinatorial object, and it leads to a polynomial time algorithm.
- The maximum weight matching in general graphs can be computed by the Edmonds' Path-Tree-Flower algorithm in $O(n^2m) = O(n^4)$ time.
 - The running time can be improved to $O(nm \log n) = O(n^3 \log n)$.
 - It is a generalization of the Blossom algorithm.