
Combinatorial Mathematics

Mong-Jen Kao (高孟駿)

Monday 18:30 – 20:20

Outline

■ The Network Flow & Minimum Cut

– The Problem Model

– The Weak-Duality between Max-Flow and Min-Cut

– The Ford-Fulkerson Algorithm

■ Some Efficient Algorithms for Max-Flow

– Capacity Scaling, Edmonds-Karp

■ Concluding Notes

The Network Flow Problem

■ A network is an undirected graph 𝐺 = (𝑉, 𝐸) with

– Edge capacity 𝒄𝒖,𝒗 ∈ ℝ≥0 for each (𝑢, 𝑣) ∈ 𝐸,

– A source vertex 𝒔 ∈ 𝑉, and

– A sink vertex 𝒕 ∈ 𝑉.

Basic Definitions

The network flow problem was originally defined on directed graphs.

In this lecture, we assume undirected graphs for simplicity.

2

𝒔 𝒕

2

1

1

1

2

2

■ Flow is sent into the network via the source vertex 𝒔,

flowed through the pipes of the network, and

then exited from the network via the sink vertex 𝒕.

The Problem Model

2

𝑠 𝑡
2

1

1

1

2

2

𝒇 units

per seconds 𝒇 units

per seconds

Flow can be water, network packages, gasoline, etc.

■ The edges in the network are pipes with limited capacity, and

allow flow to be sent in either directions.

The Problem Model

2

𝑠 𝑡
2

1

1

1

2

2

𝒇 units

(per seconds) 𝒇 units

(per seconds)

■ We can decide how the flow goes in the network.

The Problem Model

𝟐 units

(per seconds) 𝟐 units

(per seconds)

𝟏 unit

𝟏 unit

2

𝑠 𝑡
2

1

1

1

2

2

■ Flow sent from different directions on an edge cancels out.

The Problem Model

𝒂 units

𝒃 units

𝒂 ≥ 𝒃
𝒃 units

𝒃 units

𝒂 − 𝒃 units

■ Question:

What is the maximum amount of flow that can be sent?

The Problem Model

2

𝑠 𝑡
2

1

1

1

2

2

𝒇 units

per seconds 𝒇 units

per seconds

■ An 𝑠-𝑡 flow 𝑓 is a function 𝑓 ∶ 𝑉 × 𝑉 ⟶ ℝ

such that…

Formal Definition

𝑢 𝑣

𝑓𝑢,𝑣

We use the function 𝑓 to represent the flow in the network.

𝑓𝑢,𝑣 is the amount of flow

that goes from 𝑢 to 𝑣.

■ An 𝑠-𝑡 flow 𝑓 is a function 𝑓 ∶ 𝑉 × 𝑉 ⟶ ℝ such that

– 𝑓𝑢,𝑣 = 𝑓𝑣,𝑢 = 0, for all 𝑢, 𝑣 ∉ 𝐸.

– (Symmetry) 𝑓𝑢,𝑣 = −𝑓𝑣,𝑢, for all 𝑢, 𝑣 ∈ 𝐸.

– (Capacity constraint) 𝑓𝑢,𝑣 ≤ 𝑐𝑢,𝑣, for all 𝑢, 𝑣 ∈ 𝐸.

– (Conservation of flow) for any 𝑢 ∈ 𝑉\ 𝑠, 𝑡 ,

𝑣: 𝑢,𝑣 ∈𝐸

𝑓𝑢,𝑣 = 0 .

– 𝑓𝑠,𝑢 ≥ 0 and 𝑓𝑢,𝑡 ≥ 0 for all 𝑢 ∈ 𝑉.

𝑢 𝑣

𝑓𝑢,𝑣

𝑢

Conservation of Flow

We use the function 𝑓 to represent the flow in the network.

The amount of flow

that goes from 𝑢 to 𝑣.

■ In this example,

𝑓𝑠,𝑎 = 𝑓𝑎,𝑏 = 𝑓𝑏,𝑡 = 1, 𝑓𝑠,𝑐 = 𝑓𝑐,𝑑 = 𝑓𝑑,𝑡 = 1,

𝑓𝑎,𝑠 = 𝑓𝑏,𝑎 = 𝑓𝑡,𝑏 = −1, 𝑓𝑐,𝑠 = 𝑓𝑑,𝑐 = 𝑓𝑡,𝑑 = −1.

𝟐 units

(per seconds) 𝟐 units

(per seconds)

𝟏 unit

𝟏 unit

𝒂 𝒃

𝒄 𝒅

2

𝑠 𝑡
2

1

1

1

2

2

■ The value of a flow function 𝑓 is defined as

val 𝑓 ≔

𝑣: 𝑠,𝑣 ∈𝐸

𝑓𝑠,𝑣 .

– By the conservation constraint, val 𝑓 is also equal to

𝑣: 𝑣,𝑡 ∈𝐸

𝑓𝑣,𝑡 .

Formal Definition

■ Input :

– A graph / flow network 𝐺 = (𝑉, 𝐸) with edge capacity 𝑐𝑢,𝑣 ∈ ℝ≥0

for all (𝑢, 𝑣) ∈ 𝐸 and a source-sink pair 𝑠, 𝑡 ∈ 𝑉.

■ Output :

– A flow function 𝑓 ∶ 𝐸 ⟶ ℝ≥0 that has the maximum value

among all possible 𝑠-𝑡 flows for 𝐺.

■ That is, val(𝑓) ≥ val 𝑓′ holds for all 𝑠-𝑡 flow 𝑓′ for 𝐺.

The Maximum 𝑠-𝑡 Flow Problem

■ For any vertex 𝑢 ∈ 𝑉, we use

𝑓+ 𝑢 ≔

𝑣: 𝑢,𝑣 ∈𝐸
𝑓𝑢,𝑣 > 0

𝑓𝑢,𝑣

to denote the total amount of flow leaving the vertex 𝑢.

– Similarly, we use 𝑓− 𝑢 ≔ σ𝑣: 𝑢,𝑣 ∈𝐸
𝑓𝑣,𝑢 > 0

𝑓𝑣,𝑢 to denote

the total amount of flow entering the vertex 𝑢.

Notations

𝑢

𝑢

𝑓+ 𝑢

𝑓− 𝑢

■ For any 𝐷 ⊆ 𝑉, we use

𝑓+ 𝐷 ≔
𝑢∈𝐷, 𝑣∈𝑉\D
𝑓𝑢,𝑣 > 0

𝑓𝑢,𝑣

to denote the total amount of flow leaving the vertex set 𝐷.

– Similarly, we use 𝑓− 𝐷 ≔ σ𝑢∈𝐷, 𝑣∈𝑉\D
𝑓𝑣,𝑢 > 0

𝑓𝑣,𝑢 to denote

the total amount of flow entering the vertex set 𝐷.

Notations

𝑓+ 𝐷

𝐷

𝑓− 𝐷

𝐷

The Minimum 𝑠-𝑡 Cut Problem

The Cut for a Flow Network

■ Let 𝐺 = (𝑉, 𝐸) be a flow network with edge capacity (weight) 𝑐𝑢,𝑣 ∈ ℝ≥0

for all (𝑢, 𝑣) ∈ 𝐸 and a source-sink pair 𝑠, 𝑡 ∈ 𝑉.

■ Definition. (𝑠-𝑡 Cut)

– An 𝑠-𝑡 cut 𝐶 = 𝑈, ഥ𝑈 is a partition of 𝑉 into two sets 𝑈, ഥ𝑈

such that 𝑠 ∈ 𝑈 and 𝑡 ∈ ഥ𝑈.

– Conventionally, the 𝑠-𝑡 cut 𝑈, ഥ𝑈 can also be referred to as the

edges between 𝑈 and ഥ𝑈, depending on the context.

𝑈 ഥ𝑈 = 𝑉\𝑈

𝑠 𝑡

An 𝑠-𝑡 cut 𝑈, ഥ𝑈

Intuitively,

an 𝑠-𝑡 cut is a set of edges,

whose removal disconnects 𝑠 from 𝑡.

– The weight of a cut 𝐶 = 𝑈, ഥ𝑈 is defined to be

the total weight (capacity) of the edges between 𝑈 and ഥ𝑈.

■ That is,

𝑤 𝐶 =

𝑒∈𝐶

𝑐𝑒 .

𝑈 ഥ𝑈 = 𝑉\𝑈

𝑠 𝑡

An 𝑠-𝑡 cut 𝑈, ഥ𝑈

The Minimum 𝑠-𝑡 Cut Problem

■ Input :

– A graph 𝐺 = (𝑉, 𝐸) with capacity (weight) 𝑐𝑢,𝑣 ∈ ℝ≥0 for all (𝑢, 𝑣) ∈ 𝐸

and a source-sink pair 𝑠, 𝑡 ∈ 𝑉.

■ Output :

– An 𝑠-𝑡 cut 𝐶 for 𝐺 that has the minimum weight among

all possible 𝑠-𝑡 cut for 𝐺.

■ That is, 𝑤(𝐶) ≤ 𝑤(𝐶′) holds all 𝑠-𝑡 cut 𝐶′ for 𝐺.

The Weak Duality between

Maximum Flow & Minimum Cut

The maximum 𝑠-𝑡 flow is always bounded by the minimum 𝑠-𝑡 cut.

Lemma 1. (Weak Duality between Flows and Cuts)

Let 𝐺 = 𝑉, 𝐸 be a graph with edge capacity 𝑐𝑒 ∈ ℝ≥0 for all 𝑒 ∈ 𝐸 and

a source-sink pair 𝑠, 𝑡 ∈ 𝑉,

𝑓 be an 𝑠-𝑡 flow and 𝐶 = 𝑈, ഥ𝑈 be an 𝑠-𝑡 cut for 𝐺.

Then, val 𝑓 ≤ 𝑤 𝐶 , i.e.,

𝑣∈𝑉: 𝑠,𝑣 ∈𝐸

𝑓𝑠,𝑣 ≤

𝑒∈𝐶

𝑐𝑒 .

■ The proof for Lemma 1 is straightforward.

– We have

val 𝑓 = 𝑓+ 𝑈 − 𝑓− 𝑈 ≤ 𝑓+ 𝑈 ≤

𝑒∈[𝑈, ഥ𝑈]

𝑐𝑒 .

𝑈
ഥ𝑈 = 𝑉\𝑈

𝑠 𝑡

■ Lemma 1 implies that,

– If val 𝑓 = 𝑤 𝐶 holds for some 𝑓 and 𝐶, then

they are both optimal.

– In this case,

we say that 𝑓 and 𝐶 witnesses the optimality of each other.

Remarks.

The Residual Network 𝐺𝑓 and

The Ford-Fulkerson Algorithm

Computing the Maximum Flow

■ A simple greedy algorithm

– Start with a trivial flow 𝑓 = 0.

– Iteratively augment the current flow to make the value larger,

until no more flow can be sent.

– Then, we have a cut with an equal weight for the network.

𝑈 ഥ𝑈 = 𝑉\𝑈

𝑠 𝑡

The Residual Graph 𝐺𝑓

■ Let 𝑓 be a flow function for the input graph 𝐺.

– Define the residual graph 𝐺𝑓 = (𝑉, 𝐸𝑓) to be the directed graph with

■ Vertex set 𝑉,

■ (Directed) Edge set 𝐸𝑓 ≔ 𝑢, 𝑣 ∶ 𝑢, 𝑣 ∈ 𝐸 ,

■ Capacity 𝑐𝑓 𝑢, 𝑣 ≔ 𝑐𝑢,𝑣 − 𝑓𝑢,𝑣, for each 𝑢, 𝑣 ∈ 𝐸𝑓.

Intuitively, 𝑐𝑓 𝑢, 𝑣 is the remaining capacity on the directed edge (𝑢, 𝑣).

𝟐 units 𝟐 units

𝟏 unit

𝟏 unit

𝒂 𝒃

𝒄 𝒅

2

𝑠 𝑡
2

1

1

1

2

2

1

𝒔 𝒕

3

0

1

1

1

2

3

2

3

1
1

3

0

Augmenting Paths in the Residual Graph 𝐺𝑓

■ Let 𝐺𝑓 be a residual graph with edge capacity 𝑐𝑓.

– An 𝑠-𝑡 path

𝑃 = 𝑣0 𝑣1 𝑣2 ⋯ 𝑣𝑘

with 𝑠 = 𝑣0 and 𝑡 = 𝑣𝑘 is said to be an 𝑓-augmenting path if

■ 𝑐𝑓(𝑣𝑖 , 𝑣𝑖+1) > 0, for all 0 ≤ 𝑖 < 𝑘.

The residual capacity along the path is > 𝟎.

■ Let 𝐺𝑓 be a residual graph with edge capacity 𝑐𝑓.

– An 𝑠-𝑡 path
𝑃 = 𝑣0 𝑣1 𝑣2 ⋯ 𝑣𝑘

with 𝑠 = 𝑣0 and 𝑡 = 𝑣𝑘 is said to be an 𝑓-augmenting path if

■ 𝑐𝑓(𝑣𝑖 , 𝑣𝑖+1) > 0, for all 0 ≤ 𝑖 < 𝑘.

– Define

Δ𝑃 ≔ min
0≤𝑖<𝑘

𝑐𝑓 𝑣𝑖 , 𝑣𝑖+1

to be the minimum capacity along the path 𝑃 in 𝐺𝑓.

The residual capacity along the path is > 𝟎.

An extra flow with value Δ𝑃 can be sent along 𝑃.

𝟐 units 𝟐 units

𝟏 unit

𝟏 unit

𝒂 𝒃

𝒄 𝒅

2

𝑠 𝑡
2

1

1

1

2

2

1

𝑠 𝑡

3

0

1

1

1

2

3

2

3

1
1

3

0

𝒃

𝒄

𝑃 = 𝑠𝑐𝑏𝑡 with Δ𝑃 = 1

The value of 𝑓 can be increased

by Δ𝑃 = 1, by sending one unit of

flow along 𝑃 = 𝑠𝑐𝑏𝑡.

Updating the Residual Graph 𝐺𝑓

■ Let 𝐺𝑓 be a residual graph with edge capacity 𝑐𝑓 and

𝑃 = 𝑣0𝑣1𝑣2⋯𝑣𝑘 be an 𝑓-augmenting path with value ΔP.

■ Then, the value of 𝑓 can be increased by ΔP, and 𝐺𝑓 is updated as follows.

– For all 0 ≤ 𝑖 < 𝑘,

decrease 𝑐𝑓(𝑣𝑖 , 𝑣𝑖+1) by ΔP and increase 𝑐𝑓(𝑣𝑖+1, 𝑣𝑖) by ΔP.

The residual capacity

in this direction is used.
More flow can be sent from the opposite direction.

So, the residual capacity in this direction increases.

𝟑 units 𝟑 units

𝟏 unit

𝟏 unit

𝒂 𝒃

𝒄 𝒅

2

𝑠 𝑡
2

1

1

1

2

2

1

𝑠 𝑡

3

0

1

1

1

2

3

2

3

1
1

3

0

𝒃

𝒄

𝟏 unit

1

𝑠 𝑡

𝟒

0

𝟐

1

𝟎

2

3

2

𝟒

𝟎
𝟎

3

0

𝒃

𝒄

The Ford-Fulkerson Algorithm for Max-Flow

■ Start with a trivial flow 𝑓 = 0.

■ Repeat the following until there exists no 𝑓-augmenting path in 𝐺𝑓.

– Compute an 𝑓-augmenting path 𝑃 in 𝐺𝑓.

– Use 𝑃 to increase 𝑓 by Δ𝑃.

■ Output 𝑓.

A Slightly More-Detailed Pseudo-Code

■ 𝑓 ⟵ 0.

resCap 𝑢, 𝑣 = resCap 𝑣, 𝑢 = 𝑐𝑢,𝑣 for all 𝑢, 𝑣 ∈ 𝐸.

■ While there exists an 𝑓-augmenting path 𝑃 in 𝐺𝑓, do

– For each edge 𝑎, 𝑏 ∈ 𝑃,

■ Decrease resCap(𝑎, 𝑏) by Δ𝑃,

■ Increase resCap(𝑏, 𝑎) by Δ𝑃.

– Increase 𝑓 by Δ𝑃.

■ Output 𝑓.

■ To prove that the Ford-Fulkerson algorithm computes

a maximum 𝑠-𝑡 flow for the input graph 𝐺,

– We show that,

when there exists no 𝑓-augmenting path in 𝐺𝑓,

𝐺 has an 𝑠-𝑡 cut 𝐶 with weight val 𝑓 .

– By Lemma 1, both 𝐶 and 𝑓 are optimal.

The Correctness of the Algorithm

■ Suppose that there exists no 𝑓-augmenting path in 𝐺𝑓.

■ Let 𝑈 be the set of vertices that are reachable from 𝑠

via paths with positive residual capacity in 𝐺𝑓.

– That is,

𝑈 = 𝑢 ∈ 𝑉 ∶ ∃𝑠 − 𝑢 path 𝑃 such that 𝑐𝑓 𝑎, 𝑏 > 0 for all 𝑎, 𝑏 ∈ 𝑃 .

The Correctness of the Algorithm

𝑠
𝑢

> 0

> 0
> 0 𝑈 does not contain the sink 𝑡.

𝑈, ഥ𝑈 is an 𝑠-𝑡 cut.

■ Suppose that there exists no 𝑓-augmenting path in 𝐺𝑓.

■ Let 𝑈 be the set of vertices that are reachable from 𝑠

via paths with positive residual capacity in 𝐺𝑓.

– Let ഥ𝑈 = 𝑉 ∖ 𝑈.

– Then, 𝑐𝑓 𝑎, 𝑏 = 0, for all 𝑎, 𝑏 ∈ 𝑈, ഥ𝑈 .

𝑠
𝑡

𝑈 ഥ𝑈

𝑓 𝑎, 𝑏 = 𝑐𝑎,𝑏 for all 𝑎, 𝑏 ∈ 𝑈, ഥ𝑈 .

no residual capacity

from left to right here

– Let ഥ𝑈 = 𝑉 ∖ 𝑈.

– Then, 𝑐𝑓 𝑎, 𝑏 = 0, for all 𝑎, 𝑏 ∈ 𝑈, ഥ𝑈 .

– Hence,

val 𝑓 = 𝑓+ 𝑈 =
𝑎∈𝑈
𝑏∈ഥ𝑈

𝑓(𝑎, 𝑏) =
𝑎∈𝑈
𝑏∈ഥ𝑈

𝑐𝑎,𝑏 = 𝑤 𝑈, ഥ𝑈 .

𝑓 𝑎, 𝑏 = 𝑐𝑎,𝑏 for all 𝑎, 𝑏 ∈ 𝑈, ഥ𝑈 .

𝑠
𝑡

𝑈 ഥ𝑈no residual capacity

from left to right here

■ In the worst-case,

the Ford-Fulkerson algorithm takes 𝑂(𝑓 ⋅ 𝑉 + 𝐸) time.

– Each flow augmentation takes 𝑂 𝑉 + 𝐸 time to complete.

■ The Ford-Fulkerson algorithm is not an efficient algorithm.

– Its running time depends on the value of the input,

which can be exponential in the length of the input.

– It is a pseudo-polynomial time algorithm.

Time Complexity of the Ford-Fulkerson Algorithm

Some Efficient Algorithms for Max-Flow

■ In the following,

we sketch a few efficient algorithms for max-flow and min-cut.

– The capacity scaling algorithm, 𝑂 𝐸 2 ⋅ log 𝑓 , where 𝑓 is the

maximum capacity of the edges.

– The Edmonds-Karp algorithm, 𝑂 𝑉 ⋅ 𝐸 2 .

Efficient Algorithms for Max-Flow

It is beyond the scope of this course to inspect all the various flow algorithms.

Refer to concluding remarks for further references.

■ The capacity scaling algorithm works as follows.

– Let Δ be the maximum capacity of the edges.

– While Δ > 0, do

■ Repeatedly compute 𝑓-augmenting path with value at least Δ in 𝐺𝑓

and augment 𝑓 by Δ until there is none.

■ Divide Δ by 2.

– Output 𝑓.

The Capacity Scaling Algorithm

■ It can be shown (by induction) that,

– In each iteration,

there are at most 𝑂 𝐸 𝑓-augmenting paths with value ≥ Δ in 𝐺𝑓.

■ Hence, the total time complexity is 𝑂 log 𝑓 ⋅ 𝐸 2 .

■ Note that, in practice, 𝑂 log 𝑓 ≪ 𝑂 𝑉 almost always holds.

The Capacity Scaling Algorithm

■ The capacity scaling algorithm is very easy to implement.

– Almost as easy as the Ford-Fulkerson.

– It takes less than 100 lines (with ample spacing and line-breaks)

using only standard DFS.

The Capacity Scaling Algorithm

■ The Edmonds-Karp algorithm works as follows.

– While there exists 𝑓-augmenting paths in 𝐺𝑓, do

■ Compute a shortest 𝑓-augmenting paths 𝑃, using BFS.

■ Use 𝑃 to augment 𝑓 by ΔP.

– Output 𝑓.

The Edmonds-Karp Algorithm

■ It can be shown that,

– The length of the shortest 𝑓-augmenting path between iterations

is always nondecreasing and is at most 𝑂 𝑉 .

– The algorithm exhausts the capacity of at least one edge in each

iteration.

■ The length of the shortest augmenting path will increase

in 𝑂 |𝐸| rounds.

■ Hence, the total time complexity is 𝑂 |𝑉| ⋅ 𝐸 2 .

The Edmonds-Karp Algorithm

Concluding Notes

■ The Dinic’s algorithm is one of the best practical algorithm

for max-flow.

– It runs in 𝑂 𝑉 2 ⋅ 𝐸 .

– It computes a maximal set of shortest augmenting paths in

each iteration.

■ Similar to the Hopcroft-Karp algorithm for maximum

bipartite matching.

The Dinic’s Algorithm

■ We can use Dinic’s approach to compute a maximal set of

𝑓-augmenting paths with value Δ in 𝐺𝑓.

– Then,

the capacity scaling algorithm runs in 𝑂 𝑉 ⋅ 𝐸 ⋅ log 𝑓 .

Combining the Dinic’s with the Capacity Scaling

The Best Algorithm for Max-Flow

■ There are major breakthroughs in the max-flow problem in

recent years.

■ The best algorithm (so far) is given by the following research

paper, which solves the max-flow problem in “almost linear time.”

Chen, Kying, Liu, Peng, Gutenberg, Sachdeva,

“Maximum Flow and Minimum-Cost Flow in Almost-Linear Time,”

arXiv:2203.00671, 2022.

This giant monster paper has 110 pages!!

■ The best algorithm (so far) is given by the following research

paper, which solves the max-flow problem in “almost linear time.”

Chen, Kying, Liu, Peng, Gutenberg, Sachdeva,

“Maximum Flow and Minimum-Cost Flow in Almost-Linear Time,”

arXiv:2203.00671, 2022.

– It runs in 𝑂 𝐸 1+𝑜 1 time.

The hidden constant, however, is very large.

– It involves several complicated dynamic data structures.

Said by someone who had read it...

This giant monster paper has 110 pages!!

