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The Double Counting Principle

If the elements of a set are counted in two different ways, 

the answers are the same.



■ Consider the graph 𝐺 = (𝑉, 𝐸) defined on the guests, where 𝑢, 𝑣 ∈ 𝐸 if and 

only if guest 𝑢 and guest 𝑣 have shook hands.

– For each 𝑣 ∈ 𝑉, the degree of 𝑣, denoted 𝑑(𝑣), is the number of 

handshakes the guest 𝑣 has made.

– The number of edges, |𝐸|, is the total number of handshakes.

Then, we have

෍

𝑣∈𝑉

𝑑(𝑣) = 2 ⋅ 𝐸 .

Handshaking Lemma.

At a party, 

the number of guests who shake hands an odd number of times is even.

Each edge is counted twice.

2 ⋅ 𝐸 is even.

Hence, the number of vertices 

with odd degree must be even.



■ Let 𝐹 be a set family on a ground set 𝑋.

– For any 𝑥 ∈ 𝑋, define 𝑑(𝑥), the degree of 𝑥, to be the number of 

sets in 𝐹 that contain 𝑥.

■ The previous identity is a special case of the following general identity.

■ Note that, the set family is a concept equivalent to hypergraphs, where

– The elements are the vertices, and 

– The subsets in 𝐹 are the hyperedges.

Proposition 1.7.

Let 𝐹 be a family of subsets of some ground set 𝑋.  Then

෍

𝑥∈𝑋

𝑑(𝑥) = ෍

𝐴∈𝐹

|𝐴| .



■ Consider the 𝑋 × 𝐹 incidence matrix 𝑀 = 𝑚𝑥,𝐴 , where

𝑚𝑥,𝐴 = ቊ
1, if 𝑥 ∈ 𝐴,
0, otherwise.

■ Then, 

– The 𝑑(𝑥) is the number of 1s in the 𝑥-th row.

– |𝐴| is the number of 1s in the 𝐴-th column.

■ The identity counts the number of 1s in the matrix 𝑴.

Proposition 1.7.

Let 𝐹 be a family of subsets of some ground set 𝑋.  Then

෍

𝑥∈𝑋

𝑑(𝑥) = ෍

𝐴∈𝐹

|𝐴| .

𝐴1 𝐴2 𝐴|𝐹|𝐴3 ⋯

𝑥1

𝑥2

𝑥|𝑋|

⋮

The matrix 𝑀



Turán Number 𝑇(𝑛, 𝑘, 𝑙)

■ For any 𝑙 ≤ 𝑘 ≤ 𝑛, the Turán number 𝑻(𝒏, 𝒌, 𝒍) is 

the smallest number of 𝑙-element subsets 

of an 𝑛-element ground set 𝑋 such that 

every 𝑘-element subset of 𝑋 contains 

at least one of these 𝑙-element subsets.



Turán Number 𝑇(𝑛, 𝑘, 𝑙)

■ For any 𝑛 = 3, 𝑘 = 2, 𝑙 = 1, we have

𝑇 3,2,1 = 2 .

𝑥1

𝑥2

𝑥3

Any 2-element subset 

must contain 𝑥1 or 𝑥2 .

It won’t suffice, 

if only one 1-element subset was chosen.



Turán Number 𝑇(𝑛, 𝑘, 𝑙)

■ For any 𝑛 = 4, 𝑘 = 3, 𝑙 = 2, we have

𝑇 4,3,2 = 2 .

𝑥1 𝑥2
Any 3-element subset 

must contain 𝑥1, 𝑥2 or 𝑥3, 𝑥4 .

It won’t suffice, 

if only one 2-element subset was chosen.

𝑥3 𝑥4



■ Let 𝐹 be a smallest 𝑙-uniform family over 𝑋 such that every 𝑘-element 

subset of 𝑋 contains at least one member of 𝐹. 

■ Consider the 𝐹 × 𝑛
𝑘

0-1 matrix 𝑀 = 𝑚𝐴,𝐵 , where the rows are indexed 

by sets 𝐴 in 𝐹 and the columns are indexed by 𝑘-element subsets of 𝑋, and 

𝑚𝐴,𝐵 = ቊ
1, if 𝐴 ⊆ 𝐵,
0, otherwise.

Proposition 1.9.

For all positive integers 𝑙 ≤ 𝑘 ≤ 𝑛,

𝑇 𝑛, 𝑘, 𝑙 ≥ ൘
𝑛

𝑙

𝑘

𝑙
.



■ Let 𝐹 be a smallest 𝑙-uniform family over 𝑋 such that every 𝑘-subset of 𝑋

contains at least one member of 𝐹. 

■ Consider the 𝐹 × 𝑛
𝑘

0-1 matrix 𝑀 = 𝑚𝐴,𝐵 , where the rows are indexed 

by sets 𝐴 in 𝐹 and the columns are indexed by 𝑘-element subsets of 𝑋, and 

𝑚𝐴,𝐵 = ቊ
1, if 𝐴 ⊆ 𝐵,
0, otherwise.

𝐵1 𝐵2 𝐵 𝑛
𝑘𝐵3 ⋯

𝐴1

𝐴2

𝐴|𝐹|

⋮

The matrix 𝑀

Since every 𝑘-element subset of 𝑋

contains at least one member of 𝐹,

there exists at least one 1 

in each column.

For each 𝑙-element subset 𝐴, 

the number of 𝑘-element subsets 

containing the set 𝐴 is exactly 𝑛−𝑙
𝑘−𝑙

.



■ Let 𝑟𝐴 be the number of 1s in row 𝐴 and 𝑐𝐵 the number of 1s in column 𝐵.

■ Counting the number of 1s, we have

𝐹 ⋅
𝑛 − 𝑙

𝑘 − 𝑙
= ෍

𝐴∈𝐹

𝑟𝐴 =෍

𝐵

𝑐𝐵 ≥
𝑛

𝑘
,

and 

𝑇 𝑛, 𝑘, 𝑙 = 𝐹 ≥ ൘
𝑛

𝑘

𝑛 − 𝑙

𝑘 − 𝑙
= ൘

𝑛

𝑙

𝑘

𝑙
.

𝐵1 𝐵2 𝐵 𝑛
𝑘𝐵3 ⋯

𝐴1

𝐴2

𝐴|𝐹|

⋮

The matrix 𝑀

Since every 𝑘-element subset of 𝑋

contains at least one member of 𝐹,

there exists at least one 1 

in each column.

For each 𝑙-element subset 𝐴, 

the number of 𝑘-element subsets 

containing the set 𝐴 is exactly 𝑛−𝑙
𝑘−𝑙

.



Average Number of Divisors

■ How many numbers from 1, 2,… , 𝑛 divides at least one of 

the first 𝑛 numbers, 1,2,… , 𝑛 ?

– Let 𝑡(𝑛) be the number of divisors of 𝑛.

We have 𝑡 𝑝 = 2 for any prime number 𝑝, and 𝑡 2𝑚 = 𝑚 + 1 .

– While 𝑡(𝑛) varies a lot for different choices of 𝑛, 

the average number of divisors, 

𝜏 𝑛 ≔
1

𝑛
⋅ ෍

1≤𝑖≤𝑛

𝑡(𝑖)

is quite stable and is roughly ln 𝑛 for all 𝑛.



■ Consider the 𝑛 × 𝑛 0-1 matrix 𝑀 = 𝑚𝑖,𝑗 , where 

𝑚𝑖,𝑗 = 1 if and only 𝑖 divides 𝑗.

Proposition 1.10.

𝜏 𝑛 − ln 𝑛 ≤ 1 .

1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1

3 1 1 1

4 1 1

The number of 1s 

in the 𝑖-th column is 𝑡(𝑖).



■ Consider the 𝑛 × 𝑛 0-1 matrix 𝑀 = 𝑚𝑖,𝑗 , where 

𝑚𝑖,𝑗 = 1 if and only 𝑖 divides 𝑗.

■ Counting the number of 1s in the matrix, we have

෍

1≤𝑖≤𝑛

𝑛

𝑖
= ෍

1≤𝑖≤𝑛

𝑡(𝑖) = 𝑛 ⋅ 𝜏 𝑛 .

1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1

3 1 1 1

4 1 1

The number of 1s 

in the 𝑖-th row is Τ𝑛 𝑖 .

The number of 1s 

in the 𝑖-th column is 𝑡(𝑖).



■ Counting the number of 1s in the matrix, we have

෍

1≤𝑖≤𝑛

𝑛

𝑖
= ෍

1≤𝑖≤𝑛

𝑡(𝑖) = 𝑛 ⋅ 𝜏 𝑛 .

■ Since we have  𝑥 − 1 ≤ 𝑥 ≤ 𝑥 for every real number 𝑥, 

we obtain

𝑛 ⋅ ෍

1≤𝑖≤𝑛

1

𝑖
− 𝑛 ≤ 𝑛 ⋅ 𝜏 𝑛 ≤ 𝑛 ⋅ ෍

1≤𝑖≤𝑛

1

𝑖

which implies that 

𝐻𝑛 − 1 ≤ 𝜏 𝑛 ≤ 𝐻𝑛 ,

where  𝐻𝑛 ≔ σ1≤𝑖≤𝑛
1

𝑖
= ln 𝑛 + 𝛾𝑛 for some 0 ≤ 𝛾𝑛 ≤ 1 is 

the 𝑛𝑡ℎ-harmonic number.



The Density of 0-1 Matrices



■ Let 𝐻 be an 𝑚 × 𝑛 0-1 matrix and 0 ≤ 𝛼 ≤ 1 be a real number.

– We say that 𝐻 is 𝛼-dense,

if at least an 𝛼-fraction of all its entries are 1s. 

– Similarly, a row (column) is 𝛼-dense,

if at least an 𝛼-fraction of its entries are 1s.

Lemma 2.13 (Grigni and Sipser 1995).

If 𝐻 is 2𝛼-dense, then either

1. There exists a row which is 𝛼-dense, or

2. At least 𝛼 ⋅ 𝑚 of the rows are 𝛼-dense.
Note that, 𝛼 ≥ 𝛼

when 𝛼 ≤ 1.



Lemma 2.13 (Grigni and Sipser 1995).

If 𝐻 is 2𝛼-dense, then either

1. There exists a row which is 𝛼-dense, or

2. At least 𝛼 ⋅ 𝑚 of the rows are 𝛼-dense.

■ Suppose that both of the cases do not hold.

– By 2, less than 𝛼 ⋅ 𝑚 rows are 𝛼-dense.

– By 1, each of the above rows has less than 𝛼 ⋅ 𝑛 1s.

– Hence, the total number of 1s in these 𝛼-dense rows is < 𝛼 ⋅ 𝛼 ⋅ 𝑚𝑛

■ At most 𝑚 rows are not 𝛼-dense,

– Hence, the total number of 1s in these rows is  < 𝛼 ⋅ 𝑚𝑛

■ The total number of 1s in 𝐻 is  strictly less than 2𝛼 ⋅ 𝑚𝑛,   a contradiction.



Q: How many rows or columns of an 𝛼-dense matrix 

will be “dense enough?”

■ Let’s use a more general setting to answer the above question.

– Let 𝐴1, 𝐴2, … , 𝐴𝑘 be finite sets, and consider the Cartesian product

𝐴 = 𝐴1 × 𝐴2 ×⋯× 𝐴𝑘 .

– Let 𝐻 ⊆ 𝐴 be a subset of interests.

■ For any 𝑏 ∈ 𝐴𝑖, define the degree of 𝑏 in 𝐻 as

𝑑𝐻 𝑏 ≔ 𝑎 ∈ 𝐻: 𝑎𝑖 = 𝑏 ,

i.e., the number of elements in 𝐻

whose 𝑖𝑡ℎ-coordinate is 𝑏.

To relate the two concepts,

for 𝑚 × 𝑛 0-1 matrix, we have

𝐴1 = 1,2,… ,𝑚 , 𝐴2 = 1,2,… , 𝑛 , 

and 

𝐴 = 𝑖, 𝑗 ∶ 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛

is the coordinates of the entries.

For 𝑚 × 𝑛 0-1 matrix, 

𝐻 is the set of coordinates of 

the entries that are 1.

𝑑𝐻 𝑏 is the number of 1s 

in row (column) 𝑏.



– Let 𝐴1, 𝐴2, … , 𝐴𝑘 be finite sets, and consider the Cartesian product 𝐴 =

𝐴1 × 𝐴2 ×⋯× 𝐴𝑘 .

– Let 𝐻 ⊆ 𝐴 be a subset of interests.

■ For any 𝑏 ∈ 𝐴𝑖, define the degree of 𝑏 in 𝐻 as 𝑑𝐻 𝑏 ≔ 𝑎 ∈ 𝐻: 𝑎𝑖 = 𝑏 ,

i.e., the number of elements in 𝐻 whose 𝑖𝑡ℎ-coordinate is 𝑏.

■ We say that  a point 𝑏 ∈ 𝐴𝑖 is popular in 𝐻, if 

𝑑𝐻 𝑏 ≥
1

2𝑘
⋅
𝐻

𝐴𝑖
,

i.e., 𝑑𝐻 𝑏 is at least Τ1 2𝑘 fraction of the average of the elements in 𝐴𝑖.

▪ Let 𝑃𝑖 ⊆ 𝐴𝑖 be the set of all popular elements in 𝐴𝑖, and let

𝑃 ≔ 𝑃1 × 𝑃2 ×⋯× 𝑃𝑘 .Row (column) 𝑏 is popular, 

if its number of 1s (and thus density) 

is at least Τ1 2𝑘 the average of 

the rows (columns).
The entries formed by

popular rows and columns.



– Let 𝐴1, 𝐴2, … , 𝐴𝑘 be finite sets, and consider the Cartesian product

𝐴 = 𝐴1 × 𝐴2 ×⋯× 𝐴𝑘 .

– Let 𝐻 ⊆ 𝐴 be a subset of interests and 𝑑𝐻 𝑏 be the degree of 𝑏 in 𝐻.

■ We say that  a point 𝑏 ∈ 𝐴𝑖 is popular in 𝐻, if 

𝑑𝐻 𝑏 ≥
1

2𝑘
⋅
𝐻

𝐴𝑖
,

i.e., 𝑑𝐻 𝑏 is at least Τ1 2𝑘 fraction of the average of the elements in 𝐴𝑖.

▪ Let 𝑃𝑖 ⊆ 𝐴𝑖 be the set of all popular elements in 𝐴𝑖, and let

𝑃 ≔ 𝑃1 × 𝑃2 ×⋯× 𝑃𝑘 .

Lemma 2.14 (Håstad).

𝑃 > 𝐻 /2.



■ We will prove that  𝐻 ∖ 𝑃 < 𝐻 /2.

– For every non-popular point 𝑏 ∈ 𝐴𝑖, we have

𝑑𝐻 𝑏 = 𝑎 ∈ 𝐻: 𝑎𝑖 = 𝑏 <
1

2𝑘
⋅
𝐻

𝐴𝑖
.

– Counting the elements in 𝐻 ∖ 𝑃 , we have

𝐻 ∖ 𝑃 ≤ ෍

1≤𝑖≤𝑘

෍

𝑏∉𝑃𝑖

𝑑𝐻 𝑏 < ෍

1≤𝑖≤𝑘

෍

𝑏∉𝑃𝑖

1

2𝑘
⋅
𝐻

𝐴𝑖

≤ ෍

1≤𝑖≤𝑘

1

2𝑘
⋅ 𝐻 =

1

2
𝐻 .

Lemma 2.14 (Håstad).

𝑃 > 𝐻 /2.

Any element in 𝐻 ∖ 𝑃 is 

counted at least once.

𝐴𝑖 ∖ 𝑃𝑖 ≤ 𝐴𝑖



Q: How many rows or columns of an 𝛼-dense matrix 

will be “dense enough?”

■ Let’s use a more general setting to answer the above question.

– Let 𝐴1, 𝐴2, … , 𝐴𝑘 be finite sets, and consider the Cartesian product

𝐴 = 𝐴1 × 𝐴2 ×⋯× 𝐴𝑘 .

– Let 𝐻 ⊆ 𝐴 be a subset of interests.

■ For any 𝑏 ∈ 𝐴𝑖, define the degree of 𝑏 in 𝐻 as

𝑑𝐻 𝑏 ≔ 𝑎 ∈ 𝐻: 𝑎𝑖 = 𝑏 ,

i.e., the number of elements in 𝐻

whose 𝑖𝑡ℎ-coordinate is 𝑏.

To relate the two concepts,

for 𝑚 × 𝑛 0-1 matrix, we have

𝐴1 = 1,2,… ,𝑚 , 𝐴2 = 1,2,… , 𝑛 , 

and 

𝐴 = 𝑖, 𝑗 ∶ 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛

is the coordinates of the entries.

For 𝑚 × 𝑛 0-1 matrix, 

𝐻 is the set of coordinates of 

the entries that are 1.

𝑑𝐻 𝑏 is the number of 1s 

in row (column) 𝑏.



Corollary 2.15.

In any 2𝛼-dense 0-1 matrix 𝐻, either a 𝛼-fraction of its rows or 

a 𝛼-fraction of its columns (or both) are Τ𝛼 2-dense.

Q: How many rows or columns of an 𝛼-dense matrix 

will be “dense enough?”

■ Interpret 𝐻 as a subset of Cartesian product.

– Lemma 2.14 says that, the size of 𝑃1 ⋅ 𝑃2 is lower-bounded by Τ𝐻 2.

– Provided that |𝐻| is large, at least one of 𝑃1 , 𝑃2 must be large.



Corollary 2.15.

In any 2𝛼-dense 0-1 matrix 𝐻, either a 𝛼-fraction of its rows or 

a 𝛼-fraction of its columns (or both) are Τ𝛼 2-dense.

■ Let 𝑃1 is the set of rows with at least 
1

4
⋅ Τ𝐻 𝐴1 ≥ Τ𝛼𝑛 2 ones, and 

𝑃2 is the set of column with at least 
1

4
⋅ Τ𝐻 𝐴2 ≥ Τ𝛼𝑚 2 ones.

■ By Lemma 2.14,

𝑃1 ⋅ 𝑃2 ≥
1

2
⋅ 𝐻 ≥ 𝛼 ⋅ 𝑚𝑛, which implies that

𝑃1
𝑚

⋅
𝑃2
𝑛

≥ 𝛼 .

■ Hence, either  
𝑃1

𝑚
≥ 𝛼 or  

𝑃2

𝑛
≥ 𝛼 must hold.



The Principle of Inclusion-Exclusion



Theorem 3. (The inclusion-exclusion principle)

Let 𝐴1, 𝐴2, … , 𝐴𝑛 be a sequence of sets. We have

ራ

1≤𝑖≤𝑛

𝐴𝑖 = ෍

𝐼⊆ 1,2,…,𝑛 ,
𝐼≠∅

−1 𝐼 +1 ⋅ 𝐴𝐼

= ෍

0<𝑘≤𝑛

෍

𝐼⊆ 1,2,…,𝑛 ,
𝐼 =𝑘

−1 𝑘+1 ⋅ 𝐴𝐼 .

■ Let 𝐴1, 𝐴2, … , 𝐴𝑛 ⊆ 𝑋 be given sets. For any 𝐼 ⊆ 1,2,… , 𝑛 , 

define                         with the convention that                .𝐴𝐼 ≔ሩ

𝑖∈𝐼

𝐴𝑖 𝐴𝜙 = 𝑋

Let’s first derive 1ځ≤𝑖≤𝑛𝐴𝑖 .



Proposition 1.13 (Inclusion-Exclusion Principle).

Let 𝐴1, … , 𝐴𝑛 be subsets of 𝑋. 

Then the number of elements of 𝑋 which lie in none of the subsets 𝐴𝑖 is

෍

𝐼⊆{1,2,…,𝑛}

−1 𝐼 ⋅ |𝐴𝐼| .

■ Rewrite the sum as

෍

𝐼

−1 𝐼 ⋅ 𝐴𝐼 = ෍

𝐼

෍

𝑥∈𝐴𝐼

−1 𝐼 = ෍

𝑥

෍

𝐼:𝑥∈𝐴𝐼

−1 𝐼 .

■ For each 𝑥 ∈ 𝑋, consider the contribution of 𝑥 to the above summation.

– If 𝑥 ∉ 𝐴𝑖 for all 𝑖, then the only term in the sum to which 𝑥 contributes is 𝐼 = ∅, 

and the contribution is 1.



■ Rewrite the sum as

෍

𝐼

−1 𝐼 ⋅ 𝐴𝐼 = ෍

𝐼

෍

𝑥∈𝐴𝐼

−1 𝐼 = ෍

𝑥

෍

𝐼:𝑥∈𝐴𝐼

−1 𝐼 .

■ For each 𝑥 ∈ 𝑋, consider the contribution of 𝑥 to the above summation.

– If 𝑥 ∈ 𝐴𝑖 for all 𝑖, define 
𝐽 = 𝑖 ∶ 𝑥 ∈ 𝐴𝑖 ≠ ∅ .

Then 𝑥 ∈ 𝐴𝐼 if and only if 𝐼 ⊆ 𝐽.

– Thus, the contribution is

෍

𝐼⊆𝐽

−1 𝐼 = ෍

0≤𝑖≤ 𝐽

𝐽

𝑖
⋅ −1 𝑖 = 1 − 1 𝐽 = 0 .

– So, the overall sum is the number of points lying in none of the sets.



Proposition 1.14 (Inclusion-Exclusion Principle).

Let 𝐴1, … , 𝐴𝑛 be subsets of 𝑋. Then

𝐴1 ∪⋯∪ 𝐴𝑛 = ෍

∅≠𝐼⊆{1,2,…,𝑛}

−1 𝐼 +1 ⋅ |𝐴𝐼| .

■ We have 𝐴1 ∪⋯∪ 𝐴𝑛 = 𝐴∅ − 𝐴1 ∩⋯∩ 𝐴𝑛 .

■ By Proposition 1.13, we obtain 

𝐴1 ∪⋯∪ 𝐴𝑛 = ෍

∅≠𝐼⊆ 1,2,…,𝑛

−1 𝐼 +1 ⋅ 𝐴𝐼 .


