Combinatorial Mathematics

Mong－Jen Kao（高孟駿）
Monday 18：30－20：20

Outline

- Double Counting
- Principle of Inclusion-Exclusion
- Miscellaneous Topics
- The Density of 0-1 Matrices

The Double Counting Principle

If the elements of a set are counted in two different ways, the answers are the same.

Handshaking Lemma.

At a party,
the number of guests who shake hands an odd number of times is even.

- Consider the graph $G=(V, E)$ defined on the guests, where $(u, v) \in E$ if and only if guest u and guest v have shook hands.
- For each $v \in V$, the degree of v, denoted $d(v)$, is the number of handshakes the guest v has made.
- The number of edges, $|E|$, is the total number of handshakes.

Then, we have

$$
\sum_{v \in V} d(v)=2 \cdot|E| .
$$

$$
2 \cdot|E| \text { is even. }
$$

- Let F be a set family on a ground set X.
- For any $x \in X$, define $d(x)$, the degree of x, to be the number of sets in F that contain x.
- The previous identity is a special case of the following general identity.

Proposition 1.7.

Let F be a family of subsets of some ground set X. Then

$$
\sum_{x \in X} d(x)=\sum_{A \in F}|A|
$$

- Note that, the set family is a concept equivalent to hypergraphs, where
- The elements are the vertices, and
- The subsets in F are the hyperedges.

Proposition 1.7.

Let F be a family of subsets of some ground set X. Then

$$
\sum_{x \in X} d(x)=\sum_{A \in F}|A|
$$

- Consider the $|X| \times|F|$ incidence matrix $M=\left(m_{x, A}\right)$, where

$$
m_{x, A}= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { otherwise }\end{cases}
$$

- Then,
- The $d(x)$ is the number of 1 s in the x-th row.
- $|A|$ is the number of 1 s in the A-th column.
- The identity counts the number of 1 s in the matrix M.

The matrix M

Turán Number $T(n, k, l)$

- For any $l \leq k \leq n$, the Turán number $\boldsymbol{T}(\boldsymbol{n}, \boldsymbol{k}, \boldsymbol{l})$ is
the smallest number of l-element subsets
of an n-element ground set X such that
every k-element subset of X contains at least one of these l-element subsets.

Turán Number $T(n, k, l)$

- For any $n=3, k=2, l=1$, we have

$$
T(3,2,1)=2 .
$$

Any 2-element subset must contain $\left\{x_{1}\right\}$ or $\left\{x_{2}\right\}$.

It won't suffice,
if only one 1 -element subset was chosen.

Turán Number $T(n, k, l)$

- For any $n=4, k=3, l=2$, we have

$$
T(4,3,2)=2 .
$$

Any 3-element subset must contain $\left\{x_{1}, x_{2}\right\}$ or $\left\{x_{3}, x_{4}\right\}$.

It won't suffice,
if only one 2 -element subset was chosen.

Proposition 1.9.

For all positive integers $l \leq k \leq n$,

$$
T(n, k, l) \geq\binom{ n}{l} /\binom{k}{l}
$$

■ Let F be a smallest l-uniform family over X such that every k-element subset of X contains at least one member of F.

- Consider the $|F| \times\binom{ n}{k} 0-1$ matrix $M=\left(m_{A, B}\right)$, where the rows are indexed by sets A in F and the columns are indexed by k-element subsets of X, and

$$
m_{A, B}= \begin{cases}1, & \text { if } A \subseteq B \\ 0, & \text { otherwise }\end{cases}
$$

- Let F be a smallest l-uniform family over X such that every k-subset of X contains at least one member of F.
- Consider the $|F| \times\binom{ n}{k}$ 0-1 matrix $M=\left(m_{A, B}\right)$, where the rows are indexed by sets A in F and the columns are indexed by k-element subsets of X, and

$$
m_{A, B}= \begin{cases}1, & \text { if } A \subseteq B \\ 0, & \text { otherwise }\end{cases}
$$

For each l-element subset A, the number of k-element subsets containing the set A is exactly $\binom{n-l}{k-l}$.

Since every k-element subset of X contains at least one member of F, there exists at least one 1 in each column.

The matrix M

For each l-element subset A, the number of k-element subsets containing the set A is exactly $\binom{n-l}{k-l}$.

The matrix M

Since every k-element subset of X contains at least one member of F, there exists at least one 1
in each column.

- Let r_{A} be the number of 1 s in row A and c_{B} the number of 1 s in column B.
- Counting the number of 1 s , we have

$$
|F| \cdot\binom{n-l}{k-l}=\sum_{A \in F} r_{A}=\sum_{B} c_{B} \geq\binom{ n}{k}
$$

and

$$
T(n, k, l)=|F| \geq\binom{ n}{k} /\binom{n-l}{k-l}=\binom{n}{l} /\binom{k}{l} .
$$

Average Number of Divisors

■ How many numbers from $1,2, \ldots, n$ divides at least one of the first n numbers, $1,2, \ldots, n$?

- Let $t(n)$ be the number of divisors of n.

We have $t(p)=2$ for any prime number p, and $t\left(2^{m}\right)=m+1$.

- While $t(n)$ varies a lot for different choices of n, the average number of divisors,

$$
\tau(n):=\frac{1}{n} \cdot \sum_{1 \leq i \leq n} t(i)
$$

is quite stable and is roughly $\ln n$ for all n.

Proposition 1.10.

$$
|\tau(n)-\ln n| \leq 1
$$

- Consider the $n \times n 0-1$ matrix $M=\left(m_{i, j}\right)$, where $m_{i, j}=1$ if and only i divides j.

	1	2	3	4	5	6	7	8	9
1	1	1	1	1	1	1	1	1	1
2		1		1		1		1	
3			1			1			1
4				1				1	

The number of 1 s in the i-th column is $t(i)$.

- Consider the $n \times n 0-1$ matrix $M=\left(m_{i, j}\right)$, where $m_{i, j}=1$ if and only i divides j.

	1	2	3	4	5	6	7	8	9
1	1	1	1	1	1	1	1	1	1
2		1		1		1		1	
3			1			1		1	
4				1				1	

The number of 1 s in the i-th column is $t(i)$.

The number of 1 s in the i-th row is $\lfloor n / i\rfloor$.

- Counting the number of 1 s in the matrix, we have

$$
\sum_{1 \leq i \leq n}\left\lfloor\frac{n}{i}\right\rfloor=\sum_{1 \leq i \leq n} t(i)=n \cdot \tau(n)
$$

- Counting the number of 1 s in the matrix, we have

$$
\sum_{1 \leq i \leq n}\left\lfloor\frac{n}{i}\right\rfloor=\sum_{1 \leq i \leq n} t(i)=n \cdot \tau(n)
$$

- Since we have $x-1 \leq\lfloor x\rfloor \leq x$ for every real number x, we obtain

$$
n \cdot \sum_{1 \leq i \leq n} \frac{1}{i}-n \leq n \cdot \tau(n) \leq n \cdot \sum_{1 \leq i \leq n} \frac{1}{i}
$$

which implies that

$$
H_{n}-1 \leq \tau(n) \leq H_{n}
$$

where $H_{n}:=\sum_{1 \leq i \leq n} \frac{1}{i}=\ln n+\gamma_{n}$ for some $0 \leq \gamma_{n} \leq 1$ is the $n^{\text {th }}$-harmonic number.

The Density of 0-1 Matrices

- Let H be an $m \times n 0-1$ matrix and $0 \leq \alpha \leq 1$ be a real number.
- We say that H is α-dense, if at least an α-fraction of all its entries are 1s.
- Similarly, a row (column) is α-dense, if at least an α-fraction of its entries are 1s.

Lemma 2.13 (Grigni and Sipser 1995).

If H is 2α-dense, then either

1. There exists a row which is $\sqrt{\alpha}$-dense, or
2. At least $\sqrt{\alpha} \cdot m$ of the rows are α-dense.

Note that, $\sqrt{\alpha} \geq \alpha$ when $\alpha \leq 1$.

Lemma 2.13 (Grigni and Sipser 1995).

If H is 2α-dense, then either

1. There exists a row which is $\sqrt{\alpha}$-dense, or
2. At least $\sqrt{\alpha} \cdot m$ of the rows are α-dense.

- Suppose that both of the cases do not hold.
- By 2, less than $\sqrt{\alpha} \cdot m$ rows are α-dense.

By 1, each of the above rows has less than $\sqrt{\alpha} \cdot n 1 \mathrm{~s}$.
Hence, the total number of 1 s in these α-dense rows is $<\sqrt{\alpha} \cdot \sqrt{\alpha} \cdot m n$

- At most m rows are not α-dense,
- Hence, the total number of 1 s in these rows is $<\alpha \cdot m n$
- The total number of 1 s in H is strictly less than $2 \alpha \cdot m n$, a contradiction.

Q: How many rows or columns of an α-dense matrix will be "dense enough?"

- Let's use a more general setting to answer the above question.
- Let $A_{1}, A_{2}, \ldots, A_{k}$ be finite sets, and consider the Cartesian product

$$
A=A_{1} \times A_{2} \times \cdots \times A_{k} .
$$

- Let $H \subseteq A$ be a subset of interests.
- For any $b \in A_{i}$, define the degree of b in H as

For $m \times n 0-1$ matrix, H is the set of coordinates of the entries that are 1.
$d_{H}(b)$ is the number of 1 s in row (column) b.

$$
d_{H}(b):=\left|\left\{a \in H: a_{i}=b\right\}\right|
$$

i.e., the number of elements in H whose $i^{\text {th }}$-coordinate is b.

To relate the two concepts,
for $m \times n 0-1$ matrix, we have $A_{1}=\{1,2, \ldots, m\}, A_{2}=\{1,2, \ldots, n\}$, and
$A=\{(i, j): 1 \leq i \leq m, 1 \leq j \leq n\}$ is the coordinates of the entries.

- Let $A_{1}, A_{2}, \ldots, A_{k}$ be finite sets, and consider the Cartesian product $A=$ $A_{1} \times A_{2} \times \cdots \times A_{k}$.
- Let $H \subseteq A$ be a subset of interests.
- For any $b \in A_{i}$, define the degree of b in H as $d_{H}(b):=\left|\left\{a \in H: a_{i}=b\right\}\right|$, i.e., the number of elements in H whose $i^{\text {th }}$-coordinate is b.
- We say that a point $b \in A_{i}$ is popular in H, if

$$
d_{H}(b) \geq \frac{1}{2 k} \cdot \frac{|H|}{\left|A_{i}\right|}
$$

i.e., $d_{H}(b)$ is at least $1 / 2 k$ fraction of the average of the elements in A_{i}.

- Let $P_{i} \subseteq A_{i}$ be the set of all popular elements in A_{i}, and let

Row (column) b is popular,

$$
P:=P_{1} \times P_{2} \times \cdots \times P_{k} .
$$

if its number of 1 s (and thus density) is at least $1 / 2 k$ the average of the rows (columns).

The entries formed by popular rows and columns.

- Let $A_{1}, A_{2}, \ldots, A_{k}$ be finite sets, and consider the Cartesian product

$$
A=A_{1} \times A_{2} \times \cdots \times A_{k} .
$$

- Let $H \subseteq A$ be a subset of interests and $d_{H}(b)$ be the degree of b in H.
- We say that a point $b \in A_{i}$ is popular in H, if

$$
d_{H}(b) \geq \frac{1}{2 k} \cdot \frac{|H|}{\left|A_{i}\right|}
$$

i.e., $d_{H}(b)$ is at least $1 / 2 k$ fraction of the average of the elements in A_{i}.

- Let $P_{i} \subseteq A_{i}$ be the set of all popular elements in A_{i}, and let

$$
P:=P_{1} \times P_{2} \times \cdots \times P_{k} .
$$

Lemma 2.14 (Håstad).

$|P|>|H| / 2$.

Lemma 2.14 (Håstad).

$$
|P|>|H| / 2 .
$$

- We will prove that $|H \backslash P|<|H| / 2$.
- For every non-popular point $b \in A_{i}$, we have

$$
d_{H}(b)=\left|\left\{a \in H: a_{i}=b\right\}\right|<\frac{1}{2 k} \cdot \frac{|H|}{\left|A_{i}\right|} .
$$

- Counting the elements in $|H \backslash P|$, we have

$$
|H \backslash P| \leq \sum_{1 \leq i \leq k} \sum_{b \notin P_{i}} d_{H}(b)<\sum_{1 \leq i \leq k} \sum_{b \notin P_{i}} \frac{1}{2 k} \cdot \frac{|H|}{\left|A_{i}\right|}
$$

Any element in $|H \backslash P|$ is counted at least once.

$$
\leq \sum_{1 \leq i \leq k} \frac{1}{2 k} \cdot|H|=\frac{1}{2}|H|
$$

$$
\left|A_{i} \backslash P_{i}\right| \leq\left|A_{i}\right|
$$

Q: How many rows or columns of an α-dense matrix will be "dense enough?"

- Let's use a more general setting to answer the above question.
- Let $A_{1}, A_{2}, \ldots, A_{k}$ be finite sets, and consider the Cartesian product

$$
A=A_{1} \times A_{2} \times \cdots \times A_{k} .
$$

- Let $H \subseteq A$ be a subset of interests.
- For any $b \in A_{i}$, define the degree of b in H as

For $m \times n 0-1$ matrix, H is the set of coordinates of the entries that are 1.
$d_{H}(b)$ is the number of 1 s in row (column) b.

$$
d_{H}(b):=\left|\left\{a \in H: a_{i}=b\right\}\right|
$$

i.e., the number of elements in H whose $i^{\text {th }}$-coordinate is b.

To relate the two concepts,
for $m \times n 0-1$ matrix, we have $A_{1}=\{1,2, \ldots, m\}, A_{2}=\{1,2, \ldots, n\}$, and
$A=\{(i, j): 1 \leq i \leq m, 1 \leq j \leq n\}$ is the coordinates of the entries.

Q: How many rows or columns of an α-dense matrix will be "dense enough?"

- Interpret H as a subset of Cartesian product.
- Lemma 2.14 says that, the size of $\left|P_{1}\right| \cdot\left|P_{2}\right|$ is lower-bounded by $|H| / 2$.
- Provided that $|H|$ is large, at least one of $\left|P_{1}\right|,\left|P_{2}\right|$ must be large.

Corollary 2.15.

In any 2α-dense $0-1$ matrix H, either a $\sqrt{\alpha}$-fraction of its rows or a $\sqrt{\alpha}$-fraction of its columns (or both) are $\alpha / 2$-dense.

Corollary 2.15.

In any 2α-dense 0-1 matrix H, either a $\sqrt{\alpha}$-fraction of its rows or a $\sqrt{\alpha}$-fraction of its columns (or both) are $\alpha / 2$-dense.

- Let P_{1} is the set of rows with at least $\frac{1}{4} \cdot|H| /\left|A_{1}\right| \geq \alpha n / 2$ ones, and P_{2} is the set of column with at least $\frac{1}{4} \cdot|H| /\left|A_{2}\right| \geq \alpha m / 2$ ones.
- By Lemma 2.14,

$$
\left|P_{1}\right| \cdot\left|P_{2}\right| \geq \frac{1}{2} \cdot|H| \geq \alpha \cdot m n, \quad \text { which implies that } \quad \frac{\left|P_{1}\right|}{m} \cdot \frac{\left|P_{2}\right|}{n} \geq \alpha
$$

- Hence, either $\frac{\left|P_{1}\right|}{m} \geq \sqrt{\alpha}$ or $\frac{\left|P_{2}\right|}{n} \geq \sqrt{\alpha}$ must hold.

The Principle of Inclusion-Exclusion

- Let $A_{1}, A_{2}, \ldots, A_{n} \subseteq X$ be given sets. For any $I \subseteq\{1,2, \ldots, n\}$,
define $\quad A_{I}:=\bigcap_{i \in I} A_{i}$ with the convention that $A_{\phi}=X$.

Theorem 3. (The inclusion-exclusion principle)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be a sequence of sets. We have

$$
\begin{aligned}
\left|\bigcup_{I \leq i \leq n} A_{i}\right| & =\sum_{\substack{I \subseteq\{1,2, \ldots, n\}, I \neq \emptyset}}(-1)^{|I|+1} \cdot\left|A_{I}\right| \\
& =\sum_{0<k \leq n} \sum_{\substack{I \subseteq\{1,2, \ldots, n\},|I|=k}}(-1)^{k+1} \cdot\left|A_{I}\right| .
\end{aligned}
$$

Proposition 1.13 (Inclusion-Exclusion Principle).

Let A_{1}, \ldots, A_{n} be subsets of X.
Then the number of elements of X which lie in none of the subsets A_{i} is

$$
\sum_{I \subseteq\{1,2, \ldots, n\}}(-1)^{|I|} \cdot\left|A_{I}\right|
$$

- Rewrite the sum as

$$
\sum_{I}(-1)^{|I|} \cdot\left|A_{I}\right|=\sum_{I} \sum_{x \in A_{I}}(-1)^{|I|}=\sum_{x} \sum_{I: x \in A_{I}}(-1)^{|I|} .
$$

- For each $x \in X$, consider the contribution of x to the above summation.
- If $x \notin A_{i}$ for all i, then the only term in the sum to which x contributes is $I=\varnothing$, and the contribution is 1 .
- Rewrite the sum as

$$
\sum_{I}(-1)^{|I|} \cdot\left|A_{I}\right|=\sum_{I} \sum_{x \in A_{I}}(-1)^{|I|}=\sum_{x} \sum_{I: x \in A_{I}}(-1)^{|I|}
$$

- For each $x \in X$, consider the contribution of x to the above summation.
- If $x \in A_{i}$ for all i, define

$$
J=\left\{i: x \in A_{i}\right\} \neq \emptyset .
$$

Then $x \in A_{I}$ if and only if $I \subseteq J$.

- Thus, the contribution is

$$
\sum_{I \subseteq J}(-1)^{|I|}=\sum_{0 \leq i \leq|J|}\binom{|J|}{i} \cdot(-1)^{i}=(1-1)^{|J|}=0
$$

- So, the overall sum is the number of points lying in none of the sets.

Proposition 1.14 (Inclusion-Exclusion Principle).

Let A_{1}, \ldots, A_{n} be subsets of X. Then

$$
\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{\emptyset \neq I \subseteq\{1,2, \ldots, n\}}(-1)^{|I|+1} \cdot\left|A_{I}\right| .
$$

- We have $\left|A_{1} \cup \cdots \cup A_{n}\right|=\left|A_{\varnothing}\right|-\left|\overline{A_{1}} \cap \cdots \cap \overline{A_{n}}\right|$.
- By Proposition 1.13, we obtain

$$
\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{\emptyset \neq I \subseteq\{1,2, \ldots, n\}}(-1)^{|I|+1} \cdot\left|A_{I}\right| .
$$

