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Q:  Can we actually construct the object ?

We will show in this lecture that, 

the object can be constructed in expected  σ𝒊
𝒙𝒊

𝟏−𝒙𝒊
number of resamples,

assuming the prerequisite conditions of the local lemma,  

under a common algorithmic variable setting.



Some Notes

■ The result is from the following award-winning paper.

– Robin A. Moser, Gabor Tardos, 

“A constructive proof of the general Lovász local lemma.”

Journal of ACM 57(2): 11:1 – 11:15, 2010.

■ It solves a very general & fundamental problem, 

with a surprisingly simple algorithm and analysis, and beautiful ideas.

■ This paper was awarded the Gödel prize by the European Association 

for Theoretical Computer Science (EATCS) in 2020.

The result is described 

using only 4 pages !



Outline

■ Algorithmic Lovász Local Lemma 

( A constructive proof for the Lovász Local Lemma )  

– The Variable Setting Assumption

– A Simple Randomized Algorithm

■ The analysis

– The witness tree & the Galton-Watson branching process

– Coupling of the execution & evaluation



The Variable Setting Assumption

■ We assume the following setting, 

which is common in algorithmic context.

– The object to compute is described by 

a set of random variables, 𝑍1, 𝑍2, … , 𝑍𝑛, 

that are mutually independent in a fixed probability space.

– Each bad event 𝐴𝑖 is determined by 

a subset of variables in 𝑍1, … , 𝑍𝑛 , denoted by 𝑣𝑏𝑙(𝐴𝑖).



A  Simple & Elegant Randomized Algorithm

■ Consider the following randomized algorithm, 

which is due to [ Moser & Tardos in 2010 ].

1. Pick an independent random assignment for 𝑍𝑗, 1 ≤ 𝑗 ≤ 𝑛.

2. Repeat until none of 𝐴𝑖 holds.

■ Pick a violated event, say 𝐴𝑖 .

■ Resample the value of 𝑍𝑗 for all 𝑍𝑗 ∈ 𝑣𝑏𝑙(𝐴𝑖).



Roughly Speaking…

■ The algorithm keeps refreshing the violating part of assignments 

until all the events are avoided.

The initial 

assignment Is it good?

‘NO’

‘YES’

Refresh the bad assignment

(Press F5)

The Algorithm



IS THAT IT ? …… So simple, so brute-force ?

■ Clearly, 

when the algorithm stops, we have a feasible set of assignments.

■ The question is, 

Is the ‘seemingly brute-forcibly’ algorithm efficient?

We can always come up with all sorts of algorithms.

The question is always, how do we be sure that it’s a good one?



■ Define the dependency graph for the events as follows.

– For any 𝑖, 𝑗, 

there is an edge between 𝐴𝑖 and 𝐴𝑗 if and only if 

𝑣𝑏𝑙 𝐴𝑖 ∩ 𝑣𝑏𝑙 𝐴𝑗 ≠ ∅ .

■ For any 𝑖, 

let 𝐷𝑖 be the neighbors of 𝐴𝑖 in the dependency graph.

The Dependency Graph



The Algorithmic Lovász Local Lemma

Theorem 1 (Moser-Tardos 2010).

In the variable setting, if there exists 𝑥𝑖 ∈ 0,1 such that

Pr 𝐴𝑖 ≤ 𝑥𝑖 ⋅ෑ

𝑗∈𝐷𝑖

1 − 𝑥𝑗 , ∀1 ≤ 𝑖 ≤ 𝑛,

then the algorithm resamples an event 𝐴𝑖 at most an expected 

number of 
𝑥𝑖

1−𝑥𝑖
times before it finds a feasible assignment.



Proof of Theorem 1



Sketch of the Idea

■ For any 1 ≤ 𝑖 ≤ 𝑚, 

let 𝑁𝑖 denote the number of times the event 𝐴𝑖 is resampled.

– We will show that, 

𝐸 𝑁𝑖 ≤
𝑥𝑖

1 − 𝑥𝑖
.

𝑨𝝅𝟏 𝑨𝝅𝟐 𝑨𝝅𝟑 𝑨𝝅𝒌… … …

Sequence of events resampled by the algorithm

…



■ To bound 𝐸 𝑁𝑖 , 

for any 𝑘 ≥ 1, consider the first 𝑘 events resampled by the algorithm.

– We will associate the sequence 𝐴𝜋1 , 𝐴𝜋2 , … , 𝐴𝜋𝑘 with a Witness Tree.

…

Sequence of events 

resampled by the algorithm

…𝑨𝝅𝟏 𝑨𝝅𝟐 𝑨𝝅𝟑 … 𝑨𝝅𝒌

Proper witness tree

rooted at 𝐴𝜋𝑘

A tree that “witnesses” the fact that 

“the resamples of 𝐴𝜋1 , … , 𝐴𝜋𝑘−1” 

leads to “the resample of 𝐴𝜋𝑘.”

𝐴𝜋𝑘



…

Sequence of events 

resampled by the algorithm

…𝑨𝝅𝟏 𝑨𝝅𝟐 … 𝑨𝝅𝒌

Consider the witness trees for all  

possible prefixes of the sequence.

… 𝑨𝝅𝒌+𝟏

■ Then

𝐸 𝑁𝑖 = ෍
𝑇 ∶

possible proper
witness trees with root 𝐴𝑖

Pr 𝑇 occurs in the sequence

We bound the sum 

using the “Galton-Watson” 

branching process.

occurs



Definitions & Notations



The Execution Sequence

■ For any 𝑘 ≥ 1, 

let 𝜋𝑘 denote the index of the event that is resampled by the 

algorithm in the 𝑘𝑡ℎ-iteration.

𝑨𝝅𝟏 𝑨𝝅𝟐 𝑨𝝅𝟑 𝑨𝝅𝒌… … …

Sequence of events resampled by the algorithm

…



The Closed Neighborhood 𝐷𝑖
+ of 𝐴𝑖

■ For any 1 ≤ 𝑖 ≤ 𝑚, let  

𝐷𝑖
+ ≔ 𝐷𝑖 ∪ 𝐴𝑖

be the set of events that are connected to 𝐴𝑖 in the dependency

graph and the event 𝐴𝑖 itself.



The Witness Tree

■ A witness tree is a rooted tree 𝑇 such that

– each node 𝑣 ∈ 𝑇 is labeled with an event in 𝐴1, … , 𝐴𝑚 , 

say, 𝐴 𝑣 .

– if 𝑣 is a child of 𝑢 in 𝑇, then  𝐴 𝑣 ∈ 𝐷 𝑢
+ .

■ 𝑇 is called proper, if for any node 𝑣, 

all the events labeled on the children of 𝑣 are distinct.

𝐴𝑗

𝐴𝑘

⟹ 𝐴𝑘 ∈ 𝐷𝑗
+

We use [𝑣] to denote the index of the 

event labeled with vertex 𝑣.



The Witness Tree 

for any Prefix of the Execution Sequence

■ For any 𝑘 ≥ 1, define the tree 𝑇(𝑘) as follows.

– Consider the execution sequence in a backward manner.

– For each event, say, 𝐴𝜋𝑖,  attach a node labeled with 𝐴𝜋𝑖

as a child node to the deepest node in the tree

that is labeled with some event in 𝐷𝜋𝑖
+ .

Consider the events in a backward manner, 

and construct the witness tree.
𝑨𝝅𝟏 𝑨𝝅𝟐 𝑨𝝅𝟑 𝑨𝝅𝒌… …



Consider the events in a backward manner, 

and construct the witness tree.

𝑨𝝅𝟏 𝑨𝝅𝟐 𝑨𝝅𝟑 𝑨𝝅𝒋… … … … 𝑨𝝅𝒌

𝐴𝜋𝑘

𝐴𝜋𝑗

Attach this node as a child to

the deepest node in the tree 

that is labeled with some event in 𝐷𝜋𝑗
+

Hence, 

the tree is a witness tree.



Consider the events in a backward manner, 

and construct the witness tree.

𝑨𝝅𝟏 𝑨𝝅𝟐 𝑨𝝅𝟑 𝑨𝝅𝒋… … … … 𝑨𝝅𝒌

𝐴𝜋𝑘

Intuitively, the witness tree states that

“resamples of the non-root events in 𝑇(𝑘)

jointly lead to the resample of 𝐴𝜋𝑘.”

Resamples of the nodes in the bottom-up order

causes the resample of the root event.



Properties of 

the Constructed Witness Trees



■ 𝑇(𝑘) is a witness tree by definition.

■ If it is not proper, then 

some 𝐴𝑗 is labeled at least twice as children of some node.

By the construction rule, one of them should be attached deeper.

A contradiction.

Proposition 1.

For any 𝑘 ≥ 1, 

𝑇(𝑘) is a proper witness tree.

𝐴𝑗 𝐴𝑗



■ For any proper witness tree 𝑇, 

we say that it occurs (in the execution sequence), 

if 𝑇 = 𝑇(𝑘) for some 𝑘 ≥ 1.

Lemma 2.

For any proper witness tree 𝑇 of the events, we have

Pr 𝑇 occurs ≤ ෑ

𝑣∈𝑇

Pr 𝐴 𝑣 .

We will leave the proof of this lemma to the end of the slides.



Lemma 2.

For any proper witness tree 𝑇 of the events, we have

Pr 𝑇 occurs ≤ ෑ

𝑣∈𝑇

Pr 𝐴 𝑣 .

■ Let 𝑇𝑖 be the set of proper witness trees with root labeled with 𝐴𝑖.

■ By Lemma 2, we have

𝐸 𝑁𝑖 = ෍

𝑇∈𝑇𝑖

Pr 𝑇 𝑜𝑐𝑐𝑢𝑟𝑠 ≤ ෍

𝑇∈𝑇𝑖

ෑ

𝑣∈𝑇

𝑥[𝑣] ⋅ ෑ

𝑗∈𝐷 𝑣

1 − 𝑥𝑗 .

We bound the sum by relating it to a simple random process.



The Multi-type 

Galton-Watson Branching Process



The Galton-Watson Branching Process

■ Consider the following simple random process for generating  𝑇 ∈ 𝑇𝑖.

1. Generate the root node with label 𝐴𝑖.

2. While at least one node was generated in the previous iteration, 

do

▪ For each of these newly-generated nodes, say, 𝑣, do

▪ For each event 𝐵 ∈ 𝐷 𝑣
+ ,

generate a new child node for 𝑣 with label 𝐵 with probability 𝑥 𝐵 .

3. Return the tree generated.

Let 𝐵 denote the index of 

the event 𝐵 in 𝐴1, 𝐴2, … , 𝐴𝑚 . 



𝐴𝑖

For each 𝐴𝑏 ∈ 𝐷𝑖
+, 

generate a new branch 

node 𝐴𝑏 with probability 𝑥𝑏. 

For each newly generated 

branch node, say, 𝑣, and 

each 𝐴𝑏 ∈ 𝐷[𝑣]
+ , 

generate a new branch 

node 𝐴𝑏 with probability 𝑥𝑏. 

⋮ ⋮ ⋮

Repeat until 

no vertices are newly generated.

1𝑠𝑡 round

2𝑛𝑑 round

𝑘𝑡ℎ round



The Process Generates a Proper Witness Tree

■ We only branch for events in 𝐷+. 

– So it is a witness tree.

■ Each event in 𝐷+ is branched at most once.

– The witness tree is proper.



The Galton-Watson Branching Process

■ The speed for which the process terminates depends on the values 

of 𝑥𝑗, for all 𝐴𝑗 that is reachable from 𝐴𝑖 in the dependency graph.

– The process dies out quickly when the 𝑥𝑗 are small.

– On the contrary, 

when 𝑥𝑗 are large, the branching process may not stop at all.



Lemma 3.

For any 𝑇 ∈ 𝑇𝑖, we have

𝑝𝑇 =
1 − 𝑥𝑖
𝑥𝑖

⋅ෑ

𝑣∈𝑇

𝑥[𝑣] ⋅ ෑ

𝑗∈𝐷 𝑣

1 − 𝑥𝑗 .

■ For any 𝑇 ∈ 𝑇𝑖, let 𝑝𝑇 denote the probability that the Galton-Watson 

process generates 𝑇.

This lemma can be verified directly from the process.



■ Consider any vertex 𝑣 ∈ 𝑇. 

Suppose that it has children set 𝑽𝒗.

𝐴 𝑣

𝑉𝑣

Which is equal to 

ෑ

𝑢∈𝑉𝑣

𝑥 𝑢

1 − 𝑥 𝑢
⋅ ෑ

𝑗∈𝐷 𝑣
+

1 − 𝑥𝑗

This happens with probability

ෑ

𝑢∈𝑉𝑣

𝑥 𝑢 ⋅ ෑ

𝑗∈𝐷 𝑣
+ ∖ 𝑉𝑣

1 − 𝑥𝑗



𝐴𝑖

⋮ ⋮ ⋮

■ We have

𝑝𝑇 = ෑ

𝑣∈𝑇

ෑ

𝑢∈𝑉𝑣

𝑥 𝑢

1 − 𝑥 𝑢
⋅ ෑ

𝑗∈𝐷 𝑣
+

1 − 𝑥𝑗

=
1 − 𝑥𝑖
𝑥𝑖

⋅ෑ

𝑣∈𝑇

𝑥 𝑣

1 − 𝑥 𝑣
⋅ ෑ

𝑗∈𝐷 𝑣
+

1 − 𝑥𝑗

=
1 − 𝑥𝑖
𝑥𝑖

⋅ෑ

𝑣∈𝑇

𝑥 𝑣 ⋅ ෑ

𝑗∈𝐷 𝑣

1 − 𝑥𝑗 .

■ This proves the lemma.



Putting Things Together



Proof of Theorem 1

■ By Lemma 2 and Lemma 3, we obtain

𝐸 𝑁𝑖 = ෍

𝑇∈𝑇𝑖

Pr 𝑇 𝑜𝑐𝑐𝑢𝑟𝑠 ≤ ෍

𝑇∈𝑇𝑖

ෑ

𝑣∈𝑇

𝑥 𝑣 ⋅ ෑ

𝑗∈𝐷 𝑣

1 − 𝑥𝑗

=
𝑥𝑖

1 − 𝑥𝑖
⋅ ෍

𝑇∈𝑇𝑖

𝑝𝑇

≤
𝑥𝑖

1 − 𝑥𝑖
.



Proof of Lemma 2

This is the part for which the algorithmic variable-setting is truly involved.

It remains to prove the statement of Lemma 2.



■ To prove Lemma 2, we first show that, 

it suffices to consider witness trees that are strictly proper.

Lemma 2.

For any proper witness tree 𝑇 of the events, we have

Pr 𝑇 occurs in execution ≤ ෑ

𝑣∈𝑇

Pr 𝐴 𝑣 .



Strictly Proper  Witness Trees

■ Let 𝑇 be a witness tree. 

– For any 𝑣 ∈ 𝑇, let depth(𝑣) be its distance to the root.

– We say that 𝑇 is strictly proper, 

if for any 𝑢, 𝑣 ∈ 𝑇 with 𝑑𝑒𝑝𝑡ℎ 𝑢 = 𝑑𝑒𝑝𝑡ℎ 𝑣 ,

we always have

𝑣𝑏𝑙 𝐴 𝑢 ∩ 𝑣𝑏𝑙 𝐴 𝑣 = ∅ .



■ The proof is straightforward, 

by the way how witness trees are constructed 

from the execution sequence.

– If there exist 𝑢, 𝑣 ∈ 𝑇 with the same depth

and 𝑣𝑏𝑙 𝐴 𝑢 ∩ 𝑣𝑏𝑙 𝐴 𝑣 ≠ ∅, 

then one of them should be attached at a deeper level.

Proposition 4.

If 𝑇 occurs in the execution sequence, then 𝑇 is strictly proper.

𝐴 𝑢 𝐴 𝑣



■ By Proposition 4,  

Pr 𝑇 𝑜𝑐𝑐𝑢𝑟𝑠 = 0 ≤ෑ

𝑣∈𝑇

Pr 𝐴 𝑣

for witness trees that are not strictly proper.

Hence, it suffices to prove the statement for strictly proper witness trees.

Lemma 2.

For any proper witness tree 𝑇 of the events, we have

Pr 𝑇 occurs in execution ≤ ෑ

𝑣∈𝑇

Pr 𝐴 𝑣 .



■ Consider the following evaluation process for 𝑇.

– For each 𝑣 ∈ 𝑇 in a reversed-BFS order, 

sample the values of the variables in 𝑣𝑏𝑙 𝐴 𝑣 .

To Prove :

For any strictly proper witness tree 𝑇 of the events, we have

Pr 𝑇 occurs in execution ≤ ෑ

𝑣∈𝑇

Pr 𝐴 𝑣 .



𝐴𝜋𝑘

■ For each 𝑣 ∈ 𝑇 in a reversed-BFS order, 

sample the values of the variables in 𝑣𝑏𝑙 𝐴 𝑣 .



■ Consider the following evaluation process.

– For each 𝑣∈𝑇 in a reversed-BFS order, 

sample the values of the variables in 𝑣𝑏𝑙(𝐴_[𝑣]  ).

■ We say that the sample in 𝑣 is successful, if it makes 𝐴 𝑣 true.

Clearly, 
Pr sample in 𝑣 successful = Pr 𝐴 𝑣 .

■ We say that the evaluation process succeeds, if the samples in all 

vertices are successful.

It follows that
Pr evaluation succeeds =ෑ

𝑣∈𝑇

Pr 𝐴 𝑣 .



It suffices to prove that, for strictly proper witness tree 𝑇, 

Pr 𝑇 occurs in execution ≤ Pr evaluation succeeds .

■ We show that, we can couple up

– the execution of the algorithm and 

– the evaluation process of the witness tree

such that, 

if  𝑇 occurs in the execution, then the evaluation process must succeed.

■ Note that, this implies the conclusion we want.

𝐴 ⇒ 𝐵, then Pr 𝐴 ≤ Pr 𝐵 .



𝐴𝜋𝑘

𝑨𝝅𝟏 𝑨𝝅𝟐 𝑨𝝅𝟑 𝑨𝝅𝒌… …

■ We couple up  the execution sequence of the algorithm and 

the evaluation process of the witness tree 𝑇 ∈ 𝑇𝑘.



The Coupling

■ For each 1 ≤ 𝑗 ≤ 𝑛, use an identical random source for variable 𝑍𝑗

for both the algorithm execution and the evaluation process.

– Therefore, the algorithm and the evaluation process obtain

the same random sequence when they sample 𝑍𝑗.

…

…

Two identical random sources for 𝑍𝑗

The evaluation 

process for 𝑇

The randomized 

algorithm



𝑨𝝅𝟏 𝑨𝝅𝟐 𝑨𝝅𝒊−𝟏
… …

■ Consider a node 𝑣 ∈ 𝑇 ∈ 𝑇𝑘 and any 𝑍𝑗 ∈ 𝑣𝑏𝑙 𝐴 𝑣 .  

Suppose that it is the 𝑖𝑡ℎ-element in the execution sequence, i.e., 𝑣 = 𝜋𝑖.

𝐴 𝑣

𝑨𝝅𝒊
…



𝑨𝝅𝟏 𝑨𝝅𝟐 𝑨𝝅𝒊−𝟏
… …

𝐴 𝑣

𝑨𝝅𝒊
…

The number of times 𝑍𝑗 is sampled at 

𝑢 ∈ 𝑇 ∶ 𝑑𝑒𝑝𝑡ℎ 𝑢 > 𝑑𝑒𝑝𝑡ℎ 𝑣

and 

𝐴𝜋1 , 𝐴𝜋2 , … , 𝐴𝜋𝑖−1

are the same, since 𝑇 is strictly proper.

nodes deeper than 𝑣

None of the nodes at the same

level, other than 𝑣, contains 𝑍𝑗.

All of these events that contain 𝑍𝑗

appear at depth deeper than 𝑑𝑒𝑝𝑡ℎ(𝑣).



■ Consider a node 𝑣 ∈ 𝑇 ∈ 𝑇𝑘 and any 𝑍𝑗 ∈ 𝑣𝑏𝑙 𝐴 𝑣 .  

Suppose that it is the 𝑖𝑡ℎ-element in the execution sequence, i.e., 𝑣 = 𝜋𝑖.

■ The number of times 𝑍𝑗 is sampled at 

𝑢 ∈ 𝑇 ∶ 𝑑𝑒𝑝𝑡ℎ 𝑢 > 𝑑𝑒𝑝𝑡ℎ 𝑣 and 𝐴𝜋1 , 𝐴𝜋2 , … , 𝐴𝜋𝑖−1

are the same, since 𝑇 is strictly proper.

■ Since the algorithm makes one more sampling on 𝑍𝑗 initially,

the result the evaluation process gets at node 𝑣 is 

the current value of 𝒁𝒋 at the 𝑖𝑡ℎ-iteration of the algorithm.

■ This argument holds for all variables in 𝑣𝑏𝑙 𝐴 𝑣 .



𝑨𝝅𝟏 𝑨𝝅𝟐 𝑨𝝅𝒊−𝟏
… …

𝐴 𝑣

𝑨𝝅𝒊
…

nodes deeper than 𝑣

When the process samples 𝑣𝑏𝑙 𝐴 𝑣 at 𝑣, 

what it gets is the assignment the algorithm has for 𝑣𝑏𝑙 𝐴 𝑣

at the beginning of the 𝑖𝑡ℎ-iteration !

Since 𝐴𝜋𝑖 is true (the algorithm resamples it), 

the evaluation at 𝑣 must be successful.


