Combinatorial Mathematics

Mong-Jen Kao (高孟駿) Monday 18:30 – 20:20

Q: Can we actually construct the object ?

We will show in this lecture that,

the object can be <u>constructed</u> in expected $\sum_{i} \frac{x_i}{1-x_i}$ number of resamples,

assuming the prerequisite conditions of the local lemma,

under a common algorithmic variable setting.

Some Notes

■ The result is from the following *award-winning* paper.

- Robin A. Moser, Gabor Tardos,

"A constructive proof of the general Lovász local lemma." Journal of ACM 57(2): 11:1 – 11:15, 2010.

The result is described using only 4 pages !

- It solves a very general & fundamental problem, with a <u>surprisingly simple</u> algorithm and analysis, and beautiful ideas.
- This paper was awarded <u>the Gödel prize</u> by the European Association for Theoretical Computer Science (EATCS) in 2020.

Outline

Algorithmic Lovász Local Lemma

(A constructive proof for the Lovász Local Lemma)

- The Variable Setting Assumption
- A Simple Randomized Algorithm
 - The analysis
 - The witness tree & the Galton-Watson branching process
 - Coupling of the execution & evaluation

The Variable Setting Assumption

- We assume the following setting,
 which is common in algorithmic context.
 - The object to compute is described by
 a set of random variables, *Z*₁, *Z*₂, ..., *Z*_n,
 that are mutually independent in a fixed probability space.
 - Each bad event A_i is determined by a subset of variables in $\{Z_1, ..., Z_n\}$, denoted by $vbl(A_i)$.

A Simple & Elegant Randomized Algorithm

 Consider the following randomized algorithm, which is due to [Moser & Tardos in 2010].

- 1. Pick an independent random assignment for Z_j , $1 \le j \le n$.
- 2. Repeat until none of A_i holds.
 - Pick a violated event, say A_i .
 - Resample the value of Z_i for all $Z_i \in vbl(A_i)$.

Roughly Speaking...

The algorithm keeps refreshing the violating part of assignments until all the events are avoided.

IS THAT IT ? So simple, so brute-force ?

■ Clearly,

when the algorithm stops, we have a feasible set of assignments.

The question is,

Is the 'seemingly brute-forcibly' algorithm efficient?

We can always come up with all sorts of algorithms. The question is always, how do we be sure that it's a good one?

The Dependency Graph

Define the dependency graph for the events as follows.

- For any *i*, *j*, there is an edge between A_i and A_j if and only if $vbl(A_i) \cap vbl(A_j) \neq \emptyset$.

• For any i,

let D_i be the neighbors of A_i in the dependency graph.

The Algorithmic Lovász Local Lemma

Theorem 1 (Moser-Tardos 2010).

In the variable setting, if there exists $x_i \in (0,1)$ such that

$$\Pr[A_i] \le x_i \cdot \prod_{j \in D_i} (1 - x_j), \qquad \forall 1 \le i \le n,$$

then the algorithm resamples an event A_i at most an expected number of $\frac{x_i}{1-x_i}$ times before it finds a feasible assignment.

Proof of Theorem 1

Sketch of the Idea

• For any $1 \le i \le m$,

let N_i denote the number of times the event A_i is resampled.

- We will show that,

$$E[N_i] \le \frac{x_i}{1 - x_i}$$

Sequence of events resampled by the algorithm

• To bound $E[N_i]$,

for any $k \ge 1$, consider the first k events resampled by the algorithm.

- We will associate the sequence $A_{\pi_1}, A_{\pi_2}, \dots, A_{\pi_k}$ with a <u>Witness Tree</u>.

Sequence of events resampled by the algorithm

Consider the witness trees for all possible prefixes of the sequence.

Definitions & Notations

The Execution Sequence

• For any $k \ge 1$,

let π_k denote the index of the event that is resampled by the algorithm in the k^{th} -iteration.

Sequence of events resampled by the algorithm

The Closed Neighborhood D_i^+ of A_i

• For any $1 \le i \le m$, let

 $D_i^+ \coloneqq D_i \cup \{A_i\}$

be the set of events that are connected to A_i in the dependency graph and the event A_i itself.

The Witness Tree

- A witness tree is a rooted tree *T* such that
 - each node v ∈ T is labeled with an event in {A₁, ..., A_m},
 say, A_[v].
 - if v is a child of u in T, then $A_{[v]} \in D_{[u]}^+$.
- T is called **proper**, if for any node v,

all the events labeled on the children of v are distinct.

We use [v] to denote the index of the event labeled with vertex v.

The Witness Tree for any Prefix of the Execution Sequence

• For any $k \ge 1$, define the tree T(k) as follows.

- Consider the execution sequence in a backward manner.
- For each event, say, A_{π_i} , attach a node labeled with A_{π_i} as a child node to <u>the deepest node</u> in the tree

that is labeled with some event in $D_{\pi_i}^+$.

Consider the events in a backward manner, and construct the witness tree.

Consider the events in a *backward manner*,

and construct the witness tree.

Intuitively, the witness tree states that *"resamples of the non-root events in T(k) jointly lead to* the resample of A_{π_k} ."

Resamples of the nodes in the bottom-up order causes the resample of the root event.

Properties of

the Constructed Witness Trees

Proposition 1.

```
For any k \ge 1,
```

T(k) is a proper witness tree.

- T(k) is a witness tree by definition.
- If it is not proper, then

A_j A_j

some A_i is labeled at least twice as children of some node.

By the construction rule, one of them should be attached deeper. A contradiction. • For any proper witness tree T,

we say that it occurs (in the execution sequence),

if T = T(k) for some $k \ge 1$.

Lemma 2.

For any proper witness tree *T* of the events, we have

$$\Pr[T \text{ occurs }] \leq \prod_{v \in T} \Pr[A_{[v]}].$$

We will leave the proof of this lemma to the end of the slides.

Lemma 2.

For any proper witness tree *T* of the events, we have

$$\Pr[T \text{ occurs }] \leq \prod_{v \in T} \Pr[A_{[v]}].$$

- Let T_i be the set of proper witness trees with root labeled with A_i .
- By Lemma 2, we have

$$E[N_i] = \sum_{T \in T_i} \Pr[T \ occurs] \le \sum_{T \in T_i} \prod_{v \in T} \left(x_{[v]} \cdot \prod_{j \in D_{[v]}} (1 - x_j) \right)$$

We bound the sum by *relating it to a simple random process*.

The Multi-type

Galton-Watson Branching Process

The Galton-Watson Branching Process

• Consider the following simple random process for generating $T \in T_i$.

- 1. Generate the root node with label A_i .
- While at least one node was generated in the previous iteration, do
 - For each of these newly-generated nodes, say, v, do
 - For each event $B \in D_{[v]}^+$, generate a new child node for v with label B with probability $x_{[B]}$.
- 3. Return the tree generated.

Let [*B*] denote the index of the event *B* in $\{A_1, A_2, ..., A_m\}$.

For each $A_b \in D_i^+$, generate a new branch node A_b with probability x_b .

For each newly generated branch node, say, v, and each $A_b \in D^+_{[v]}$, generate a new branch node A_b with probability x_b .

 k^{th} round

Repeat until no vertices are newly generated.

The Process Generates a Proper Witness Tree

- We only branch for events in D^+ .
 - So it is a witness tree.
- Each event in D^+ is branched at most once.
 - The witness tree is proper.

The Galton-Watson Branching Process

- The speed for which the process terminates depends on the values of x_i , for all A_i that is reachable from A_i in the dependency graph.
 - The process dies out quickly when the x_i are small.
 - On the contrary,

when x_i are large, the branching process may not stop at all.

■ For any $T \in T_i$, let p_T denote the probability that the Galton-Watson process generates *T*.

This lemma can be verified directly from the process.

• Consider any vertex $v \in T$.

Suppose that it has children set V_v .

We have

$$p_T = \prod_{v \in T} \left(\prod_{u \in V_v} \frac{x_{[u]}}{1 - x_{[u]}} \cdot \prod_{j \in D_{[v]}^+} (1 - x_j) \right)$$

$$= \frac{1-x_i}{x_i} \cdot \prod_{v \in T} \left(\frac{x_{[v]}}{1-x_{[v]}} \cdot \prod_{j \in D_{[v]}^+} (1-x_j) \right)$$

$$= \frac{1-x_i}{x_i} \cdot \prod_{v \in T} \left(x_{[v]} \cdot \prod_{j \in D_{[v]}} (1-x_j) \right) .$$

This proves the lemma.

Putting Things Together

Proof of Theorem 1

By Lemma 2 and Lemma 3, we obtain

$$E[N_i] = \sum_{T \in T_i} \Pr[T \ occurs] \leq \sum_{T \in T_i} \prod_{\nu \in T} \left(x_{[\nu]} \cdot \prod_{j \in D_{[\nu]}} (1 - x_j) \right)$$

$$= \frac{x_i}{1-x_i} \cdot \sum_{T \in T_i} p_T$$

$$\leq \frac{x_i}{1-x_i}$$

Proof of Lemma 2

It remains to prove the statement of Lemma 2.

This is the part for which the *algorithmic variable-setting* is truly involved.

Lemma 2.

For any proper witness tree *T* of the events, we have $\Pr[T \text{ occurs in execution }] \leq \prod_{v \in T} \Pr[A_{[v]}].$

To prove Lemma 2, we first show that,

it suffices to consider witness trees that are *strictly proper*.

Strictly Proper Witness Trees

- Let T be a witness tree.
 - For any $v \in T$, let depth(v) be its distance to the root.
 - We say that *T* is *strictly proper*,

if for any $u, v \in T$ with depth(u) = depth(v),

we always have

$$vbl(A_{[u]}) \cap vbl(A_{[v]}) = \emptyset$$
.

Proposition 4.

If T occurs in the execution sequence, then T is strictly proper.

- The proof is straightforward,
 by the way how witness trees are constructed
 from the execution sequence.
 - If there exist $u, v \in T$ with the same depth and $vbl(A_{[u]}) \cap vbl(A_{[v]}) \neq \emptyset$, then one of them should be attached at a deeper level.

Lemma 2.

For any proper witness tree *T* of the events, we have

$$\Pr[T \text{ occurs in execution }] \leq \prod_{v \in T} \Pr[A_{[v]}].$$

By Proposition 4,

$$\Pr[T \ occurs] = 0 \le \prod_{v \in T} \Pr[A_{[v]}]$$

for witness trees that are not strictly proper.

Hence, it suffices to prove the statement for strictly proper witness trees.

To Prove :

For any strictly proper witness tree *T* of the events, we have

$$\Pr[T \text{ occurs in execution }] \leq \prod_{v \in T} \Pr[A_{[v]}].$$

• Consider the following *evaluation process* for *T*.

- For each $v \in T$ in a <u>reversed-BFS order</u>,

sample the values of the variables in $vbl(A_{[v]})$.

• For each $v \in T$ in a <u>reversed-BFS order</u>,

sample the values of the variables in $vbl(A_{[v]})$.

- Consider the following evaluation process.
 - For each v∈T in a reversed-BFS order,
 sample the values of the variables in vbl(A_[v]).
- We say that the sample in v is <u>successful</u>, if it makes $A_{[v]}$ true. Clearly, Pr[sample in v successful] = Pr[$A_{[v]}$].
- We say that the evaluation process succeeds, if the samples in all vertices are successful.

It follows that
$$\Pr[\text{ evaluation succeeds }] = \prod_{v \in T} \Pr[A_{[v]}].$$

It suffices to prove that, for *strictly proper witness tree* T,

Pr[T occurs in execution] \leq Pr[evaluation succeeds].

- We show that, we can couple up
 - the execution of the algorithm and
 - the evaluation process of the witness tree

such that,

if T occurs in the execution, then the evaluation process must succeed.

Note that, this implies the conclusion we want.

 $A \Rightarrow B$, then $\Pr[A] \leq \Pr[B]$.

■ We couple up <u>the execution sequence of the algorithm</u> and <u>the evaluation process of the witness tree</u> $T \in T_k$.

The Coupling

- For each $1 \le j \le n$, use **an identical random source** for variable Z_j for both <u>the algorithm execution</u> and <u>the evaluation process</u>.
 - Therefore, the algorithm and the evaluation process obtain the same random sequence when they sample Z_i .

• Consider a node $v \in T \in T_k$ and any $Z_i \in vbl(A_{[v]})$.

Suppose that it is the *i*th-element in the execution sequence, i.e., $[v] = \pi_i$.

None of the nodes at the same level, other than v, contains Z_j .

The number of times Z_j is sampled at $\{ u \in T : depth(u) > depth(v) \}$ and

$$\{A_{\pi_1}, A_{\pi_2}, \dots, A_{\pi_{i-1}}\}$$

are *the same*, since *T* is strictly proper.

All of these events that contain Z_j appear at depth deeper than depth(v).

...

Consider a node $v \in T \in T_k$ and any $Z_j \in vbl(A_{[v]})$. Suppose that it is the *i*th-element in the execution sequence, i.e., $[v] = \pi_i$.

• The number of times Z_i is sampled at

 $\{u \in T : depth(u) > depth(v)\}$ and $\{A_{\pi_1}, A_{\pi_2}, \dots, A_{\pi_{i-1}}\}$ are <u>the same</u>, since *T* is strictly proper.

Since the algorithm <u>makes one more sampling on</u> Z_j <u>initially</u>, the result the evaluation process gets at node v is

the current value of Z_i at the i^{th} -iteration of the algorithm.

• This argument holds for all variables in $vbl(A_{[v]})$.

When the process samples $vbl(A_{[v]})$ at v,

 A_{π_1}

 A_{π_2}

what it gets is the assignment the algorithm has for $vbl(A_{[v]})$ at the beginning of the *i*th-iteration !

Since A_{π_i} is true (the algorithm resamples it), the evaluation at v must be successful.

 $A_{[v]}$

