Combinatorial Mathematics

Mong－Jen Kao（高孟駿）
Monday 18：30－20：20

Q: Can we actually construct the object?

We will show in this lecture that,
the object can be constructed in expected $\sum_{i} \frac{x_{i}}{1-x_{i}}$ number of resamples,
assuming the prerequisite conditions of the local lemma, under a common algorithmic variable setting.

Some Notes

- The result is from the following award-winning paper.
- Robin A. Moser, Gabor Tardos, "A constructive proof of the general Lovász local lemma." Journal of ACM 57(2): 11:1-11:15, 2010.
- It solves a very general \& fundamental problem,

The result is described using only 4 pages ! with a surprisingly simple algorithm and analysis, and beautiful ideas.

- This paper was awarded the Gödel prize by the European Association for Theoretical Computer Science (EATCS) in 2020.

Outline

- Algorithmic Lovász Local Lemma
(A constructive proof for the Lovász Local Lemma)
- The Variable Setting Assumption
- A Simple Randomized Algorithm
- The analysis
- The witness tree \& the Galton-Watson branching process
- Coupling of the execution \& evaluation

The Variable Setting Assumption

- We assume the following setting, which is common in algorithmic context.
- The object to compute is described by a set of random variables, $Z_{1}, Z_{2}, \ldots, Z_{n}$, that are mutually independent in a fixed probability space.
- Each bad event A_{i} is determined by a subset of variables in $\left\{Z_{1}, \ldots, Z_{n}\right\}$, denoted by $v b l\left(A_{i}\right)$.

A Simple \& Elegant Randomized Algorithm

- Consider the following randomized algorithm, which is due to [Moser \& Tardos in 2010].

1. Pick an independent random assignment for $Z_{j}, 1 \leq j \leq n$.
2. Repeat until none of A_{i} holds.

- Pick a violated event, say A_{i}.
- Resample the value of Z_{j} for all $Z_{j} \in \operatorname{vbl}\left(A_{i}\right)$.

Roughly Speaking...

- The algorithm keeps refreshing the violating part of assignments until all the events are avoided.

IS THAT IT ? So simple, so brute-force ?

- Clearly, when the algorithm stops, we have a feasible set of assignments.
- The question is,

Is the 'seemingly brute-forcibly' algorithm efficient?

We can always come up with all sorts of algorithms.
The question is always, how do we be sure that it's a good one?

The Dependency Graph

- Define the dependency graph for the events as follows.
- For any i, j,
there is an edge between A_{i} and A_{j} if and only if

$$
v b l\left(A_{i}\right) \cap v b l\left(A_{j}\right) \neq \varnothing .
$$

- For any i, let D_{i} be the neighbors of A_{i} in the dependency graph.

The Algorithmic Lovász Local Lemma

Theorem 1 (Moser-Tardos 2010).

In the variable setting, if there exists $x_{i} \in(0,1)$ such that

$$
\operatorname{Pr}\left[A_{i}\right] \leq x_{i} \cdot \prod_{j \in D_{i}}\left(1-x_{j}\right), \quad \forall 1 \leq i \leq n,
$$

then the algorithm resamples an event A_{i} at most an expected number of $\frac{x_{i}}{1-x_{i}}$ times before it finds a feasible assignment.

Proof of Theorem 1

Sketch of the Idea

- For any $1 \leq i \leq m$, let N_{i} denote the number of times the event A_{i} is resampled.
- We will show that,

$$
E\left[N_{i}\right] \leq \frac{x_{i}}{1-x_{i}} .
$$

Sequence of events resampled by the algorithm

- To bound $E\left[N_{i}\right]$, for any $k \geq 1$, consider the first k events resampled by the algorithm.
- We will associate the sequence $A_{\pi_{1}}, A_{\pi_{2}}, \ldots, A_{\pi_{k}}$ with a Witness Tree.

Sequence of events resampled by the algorithm

A tree that "witnesses" the fact that "the resamples of $A_{\pi_{1}}, \ldots, A_{\pi_{k-1}}$ " leads to "the resample of $A_{\pi_{k}}$."

Sequence of events

 resampled by the algorithmConsider the witness trees for all possible prefixes of the sequence.

Definitions \& Notations

The Execution Sequence

- For any $k \geq 1$,
let π_{k} denote the index of the event that is resampled by the algorithm in the $k^{\text {th }}$-iteration.

Sequence of events resampled by the algorithm

The Closed Neighborhood D_{i}^{+}of A_{i}

- For any $1 \leq i \leq m$, let

$$
D_{i}^{+}:=D_{i} \cup\left\{A_{i}\right\}
$$

be the set of events that are connected to A_{i} in the dependency graph and the event A_{i} itself.

The Witness Tree

- A witness tree is a rooted tree T such that
- each node $v \in T$ is labeled with an event in $\left\{A_{1}, \ldots, A_{m}\right\}$, say, $A_{[v]}$.
- if v is a child of u in T, then $A_{[v]} \in D_{[u]}^{+}$.
- T is called proper, if for any node v, all the events labeled on the children of v are distinct.

The Witness Tree

for any Prefix of the Execution Sequence

- For any $k \geq 1$, define the tree $T(k)$ as follows.
- Consider the execution sequence in a backward manner.
- For each event, say, $A_{\pi_{i}}$, attach a node labeled with $A_{\pi_{i}}$ as a child node to the deepest node in the tree that is labeled with some event in $D_{\pi_{i}}^{+}$.

$$
\boldsymbol{A}_{\boldsymbol{\pi}_{1}} \quad \boldsymbol{A}_{\pi_{2}}
$$

\square
\square Consider the events in a backward manner, and construct the witness tree.

Consider the events in a backward manner, and construct the witness tree.

$$
\begin{array}{llllll}
A_{\pi_{1}} & A_{\pi_{2}} & A_{\pi_{3}} & \cdots & \cdots & A_{\pi_{j}} \\
\hline
\end{array}
$$

Hence, the tree is a witness tree.

Attach this node as a child to the deepest node in the tree
that is labeled with some event in $D_{\pi_{j}}^{+}$

Consider the events in a backward manner, and construct the witness tree.

$A_{\pi_{1}}$	$A_{\pi_{2}}$	$A_{\pi_{3}}$	\cdots	\cdots	$A_{\pi_{j}}$	\square	\cdots	\cdots
$A_{\pi_{k}}$								

Intuitively, the witness tree states that
"resamples of the non-root events in $T(k)$ jointly lead to the resample of $A_{\pi_{k}}$."

Resamples of the nodes in the bottom-up order causes the resample of the root event.

Properties of
the Constructed Witness Trees

Proposition 1.

For any $k \geq 1$,

$$
T(k) \text { is a proper witness tree. }
$$

- $T(k)$ is a witness tree by definition.
- If it is not proper, then

some A_{j} is labeled at least twice as children of some node.
By the construction rule, one of them should be attached deeper. A contradiction.
- For any proper witness tree T,
we say that it occurs (in the execution sequence),

$$
\text { if } T=T(k) \text { for some } k \geq 1 \text {. }
$$

Lemma 2.

For any proper witness tree T of the events, we have

$$
\operatorname{Pr}[T \text { occurs }] \leq \prod_{v \in T} \operatorname{Pr}\left[A_{[v]}\right] .
$$

Lemma 2.

For any proper witness tree T of the events, we have

$$
\operatorname{Pr}[T \text { occurs }] \leq \prod_{v \in T} \operatorname{Pr}\left[A_{[v]}\right] .
$$

- Let T_{i} be the set of proper witness trees with root labeled with A_{i}.
- By Lemma 2, we have

$$
E\left[N_{i}\right]=\sum_{T \in T_{i}} \operatorname{Pr}[T \text { occurs }] \leq \sum_{T \in T_{i}} \prod_{v \in T}\left(x_{[v]} \cdot \prod_{j \in D_{[v]}}\left(1-x_{j}\right)\right)
$$

The Multi-type

Galton-Watson Branching Process

The Galton-Watson Branching Process

- Consider the following simple random process for generating $T \in T_{i}$.

1. Generate the root node with label A_{i}.
2. While at least one node was generated in the previous iteration, do

- For each of these newly-generated nodes, say, v, do
- For each event $B \in D_{[v]}^{+}$, generate a new child node for v with label B with probability $x_{[B]}$.

3. Return the tree generated.

For each $A_{b} \in D_{i}^{+}$, generate a new branch node A_{b} with probability x_{b}.

For each newly generated branch node, say, v, and each $A_{b} \in D_{[v]}^{+}$, generate a new branch node A_{b} with probability x_{b}.

Repeat until
no vertices are newly generated.

The Process Generates a Proper Witness Tree

- We only branch for events in D^{+}.
- So it is a witness tree.
- Each event in D^{+}is branched at most once.
- The witness tree is proper.

The Galton-Watson Branching Process

- The speed for which the process terminates depends on the values of x_{j}, for all A_{j} that is reachable from A_{i} in the dependency graph.
- The process dies out quickly when the x_{j} are small.
- On the contrary, when x_{j} are large, the branching process may not stop at all.
- For any $T \in T_{i}$, let p_{T} denote the probability that the Galton-Watson process generates T.

Lemma 3.

For any $T \in T_{i}$, we have

$$
p_{T}=\frac{1-x_{i}}{x_{i}} \cdot \prod_{v \in T}\left(x_{[v]} \cdot \prod_{j \in D_{[v]}}\left(1-x_{j}\right)\right) .
$$

- Consider any vertex $v \in T$.

Suppose that it has children set $\boldsymbol{V}_{\boldsymbol{v}}$.

This happens with probability

$$
\prod_{u \in V_{v}} x_{[u]} \cdot \prod_{j \in D_{[v]}^{+} \backslash\left[V_{v}\right]}\left(1-x_{j}\right)
$$

Which is equal to

$$
\prod_{u \in V_{v}} \frac{x_{[u]}}{1-x_{[u]}} \cdot \prod_{j \in D_{[v]}^{+}}\left(1-x_{j}\right)
$$

- We have

$$
\begin{aligned}
p_{T} & =\prod_{v \in T}\left(\prod_{u \in V_{v}} \frac{x_{[u]}}{1-x_{[u]}} \cdot \prod_{j \in D_{[v]}^{+}}\left(1-x_{j}\right)\right) \\
& =\frac{1-x_{i}}{x_{i}} \cdot \prod_{v \in T}\left(\frac{x_{[v]}}{1-x_{[v]}} \cdot \prod_{j \in D_{[v]}^{+}}\left(1-x_{j}\right)\right) \\
& =\frac{1-x_{i}}{x_{i}} \cdot \prod_{v \in T}\left(x_{[v]} \cdot \prod_{j \in D_{[v]}}\left(1-x_{j}\right)\right)
\end{aligned}
$$

- This proves the lemma.

Putting Things Together

Proof of Theorem 1

- By Lemma 2 and Lemma 3, we obtain

$$
\begin{aligned}
E\left[N_{i}\right]=\sum_{T \in T_{i}} \operatorname{Pr}[T \text { occurs }] & \leq \sum_{T \in T_{i}} \prod_{v \in T}\left(x_{[v]} \cdot \prod_{j \in D_{[v]}}\left(1-x_{j}\right)\right) \\
& =\frac{x_{i}}{1-x_{i}} \cdot \sum_{T \in T_{i}} p_{T} \\
& \leq \frac{x_{i}}{1-x_{i}}
\end{aligned}
$$

Proof of Lemma 2

It remains to prove the statement of Lemma 2.

This is the part for which the algorithmic variable-setting is truly involved.

Lemma 2.

For any proper witness tree T of the events, we have

$$
\operatorname{Pr}[T \text { occurs in execution }] \leq \prod_{v \in T} \operatorname{Pr}\left[A_{[v]}\right] .
$$

- To prove Lemma 2, we first show that, it suffices to consider witness trees that are strictly proper.

Strictly Proper Witness Trees

- Let T be a witness tree.
- For any $v \in T$, let depth (v) be its distance to the root.
- We say that T is strictly proper,
if for any $u, v \in T$ with $\operatorname{depth}(u)=\operatorname{depth}(v)$,
we always have

$$
v b l\left(A_{[u]}\right) \cap \operatorname{vbl}\left(A_{[v]}\right)=\varnothing .
$$

Proposition 4.

If T occurs in the execution sequence, then T is strictly proper.

- The proof is straightforward, by the way how witness trees are constructed from the execution sequence.
- If there exist $u, v \in T$ with the same depth and $v b l\left(A_{[u]}\right) \cap v b l\left(A_{[v]}\right) \neq \emptyset$,
 then one of them should be attached at a deeper level.

Lemma 2.

For any proper witness tree T of the events, we have

$$
\operatorname{Pr}[T \text { occurs in execution }] \leq \prod_{v \in T} \operatorname{Pr}\left[A_{[v]}\right] .
$$

- By Proposition 4,

$$
\operatorname{Pr}[T \text { occurs }]=0 \leq \prod_{v \in T} \operatorname{Pr}\left[A_{[v]}\right]
$$

for witness trees that are not strictly proper.
Hence, it suffices to prove the statement for strictly proper witness trees.

To Prove:

For any strictly proper witness tree T of the events, we have

$$
\operatorname{Pr}[T \text { occurs in execution }] \leq \prod_{v \in T} \operatorname{Pr}\left[A_{[v]}\right] .
$$

- Consider the following evaluation process for T.
- For each $v \in T$ in a reversed-BFS order, sample the values of the variables in $\operatorname{vbl}\left(A_{[v]}\right)$.
- For each $v \in T$ in a reversed-BFS order, sample the values of the variables in $\operatorname{vbl}\left(A_{[v]}\right)$.

- Consider the following evaluation process.
- For each $v \in T$ in a reversed-BFS order, sample the values of the variables in $\operatorname{vbl}\left(A_{-}[v]\right)$.
- We say that the sample in v is successful, if it makes $A_{[v]}$ true.

Clearly,

$$
\operatorname{Pr}[\text { sample in } v \text { successful }]=\operatorname{Pr}\left[A_{[v]}\right]
$$

- We say that the evaluation process succeeds, if the samples in all vertices are successful.

It follows that

$$
\operatorname{Pr}[\text { evaluation succeeds }]=\prod_{v \in T} \operatorname{Pr}\left[A_{[v]}\right]
$$

It suffices to prove that, for strictly proper witness tree T, $\operatorname{Pr}[T$ occurs in execution $] \leq \operatorname{Pr}[$ evaluation succeeds $]$.

- We show that, we can couple up
- the execution of the algorithm and
- the evaluation process of the witness tree
such that,
if T occurs in the execution, then the evaluation process must succeed.
- Note that, this implies the conclusion we want.

$$
A \Rightarrow B, \text { then } \operatorname{Pr}[A] \leq \operatorname{Pr}[B] .
$$

- We couple up the execution sequence of the algorithm and the evaluation process of the witness tree $T \in T_{k}$.

The Coupling

- For each $1 \leq j \leq n$, use an identical random source for variable Z_{j} for both the algorithm execution and the evaluation process.
- Therefore, the algorithm and the evaluation process obtain the same random sequence when they sample Z_{j}.

Two identical random sources for Z_{j}

- Consider a node $v \in T \in T_{k}$ and any $Z_{j} \in \operatorname{vbl}\left(A_{[v]}\right)$.

Suppose that it is the $i^{\text {th }}$-element in the execution sequence, i.e., $[v]=\pi_{i}$.

None of the nodes at the same level, other than v, contains Z_{j}.

The number of times Z_{j} is sampled at

$$
\{u \in T: \operatorname{depth}(u)>\operatorname{depth}(v)\}
$$

and

$$
\left\{A_{\pi_{1}}, A_{\pi_{2}}, \ldots, A_{\pi_{i-1}}\right\}
$$

are the same, since T is strictly proper.

All of these events that contain Z_{j} appear at depth deeper than depth (v).
$\boldsymbol{A}_{\pi_{1}}$
$\boldsymbol{A}_{\boldsymbol{\pi}_{2}}$

$$
\text { ... } \quad . .
$$

- Consider a node $v \in T \in T_{k}$ and any $Z_{j} \in \operatorname{vbl}\left(A_{[v]}\right)$.

Suppose that it is the $i^{t h}$-element in the execution sequence, i.e., $[v]=\pi_{i}$.

- The number of times Z_{j} is sampled at

$$
\{u \in T: \operatorname{depth}(u)>\operatorname{depth}(v)\} \text { and }\left\{A_{\pi_{1}}, A_{\pi_{2}}, \ldots, A_{\pi_{i-1}}\right\}
$$

are the same, since T is strictly proper.

- Since the algorithm makes one more sampling on Z_{j} initially, the result the evaluation process gets at node v is the current value of $Z_{\boldsymbol{j}}$ at the $i^{\text {th }}$-iteration of the algorithm.
- This argument holds for all variables in $v b l\left(A_{[v]}\right)$.

When the process samples $v b l\left(A_{[v]}\right)$ at v, what it gets is the assignment the algorithm has for $v b l\left(A_{[v]}\right)$ at the beginning of the $i^{\text {th }}$-iteration!

Since $A_{\pi_{i}}$ is true (the algorithm resamples it), the evaluation at v must be successful.

