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The Pigeonhole Principle

(aka Dirichlet’s principle)

If a set of size at least rs + 1 is partitioned into r sets,
then some class receives at least s + 1 elements.

An “integer version” of the Averaging Principle




Proposition 1.

In any graph, there exist two vertices of the same degree.

m LetG = (V,E) be a graph with |V| = n.

m The degree of any vertex is between 0 and n — 1.

- If there is a vertex with degree 0O, then there exists no vertex with
degree n — 1, and vice versa.

- There are at most n — 1 different values for the vertex degrees,
while there are n vertices.

- By the pigeonhole principle,
at least two vertices have the same degree.




Independent Set & Chromatic Number

m LetG = (V,E) be a graph.
- Let a(G) denote the maximum size of any independent set for G.

- Let y(G) denote the chromatic number of G,
l.e., the minimum number of colors required to color V such that,

no adjacent vertices have the same color.

- Consider a coloring of IV using y(G) colors.

Let V1,15, ..., Vy () be the partition of the vertices by their colors.

m Forany 1 <i< y(G), the setV; is an independent set for G.



Proposition 2.

In any graph G with n vertices, n < a(G) - x(G).

m Proof 1.

- Consider a coloring of V that uses y(G) colors and V3, V5, ..., V, ()
be the partition of the vertices by their colors.

- Since V; is an independent set, |V;| < a(G).

- Hence, n = ),;|V;| < a(G) - x(G).




Proposition 2.

In any graph G with n vertices, n < a(G) - x(G).

m Proof 2.

- Consider a coloring of V that uses y(G) colors and V3, V5, ..., Vi (6)
be the partition of the vertices by their colors.

- By the pigeonhole principle, there exists some i with |V;| > %

- Since V; is an independent set, a(G) = |V;].

- By the above two inequalities, n < a(G) - x(G).




Proposition 3.

Let G be a graph with n vertices. If every vertex has a degree of
at least (n — 1)/2, then G is connected.

m Proof.

- We prove that, for any pair of vertices, say, x and vy,
either x and y are adjacent or have a common neighbor.

- If x and y are not adjacent, then there are at least n — 1 edges
connecting them to the remaining vertices.

- Since there are only n — 2 other vertices,
at least two of these n — 1 edges connect to the same vertex.




Some Remark.

m The statement from Proposition 3 is the best possible.

- To see that, consider the graph that consists of two disjoint complete
graphs, each of n/2 vertices.

Then every vertex has degree (n — 2)/2, and the graph is disconnected.

m Note that, what we actually proved is that, if every vertex has degree at
least (n — 1)/2, then the graph has diameter at most two.




The Erdos-Szekeres Theorem




Increasing / Decreasing Sequences

m LetA = (aqa,, .., a,) be asequence of n different numbers.

- A subsequence of k terms of A is a sequence B of k distinct terms of A
appearing in the same order in which they appear in 4, i.e.,

B = (ail,aiz, ...,Cll'k), where il < iz SN ik'

m Asequence is said to be increasing ifa; < a, < - < a,
and decreasing if a; > a, > -+ > a,,.




Theorem 5 (Erdos-Szekeres 1935).

Let A = (aq,a,, ..., a,) be a sequence of n different real numbers.
If n > sr 4+ 1, then either A has an increasing subseqguence of
length s 4+ 1 or a decreasing subsequence of length r + 1.

m Proof. (due to Seidenberg 1959).

For any 1 < i < n, associate a; with a pair (x;,y;), where

- x; Is the length of the longest increasing subsequence ending at a;.

- y; Is the length of the longest decreasing subsequence starting at a;.

x; . longest LIS ending at a; ‘ y; - longest LDS starting at a;
a;
|




For any 1 < i < n, associate a; with a pair (x;, y;), where

- x; Is the length of the longest increasing subsequence ending at a;.

- y; Is the length of the longest decreasing subseguence starting at a;.

x; . longest LIS ending at qa; ‘ y; . longest LDS starting at a;
a;
i

m Foranyi#j,say, 1 <i<j<n,wehave (x;,y;) # (x,y;)-

- It a; < aj,then Xj 2X1+1

- Ifa; > aj, theny;, =y; + 1.
The elements of the sequence are distinct,
so one of the two conditions must hold.




m Foranyi#j,say,1<i<j<mn,wehave (x;,y;) # (x;,y;).

- If a; < Clj,then Xj = X; + 1.

- Ifa; >a;, theny; = y; + 1.

m Consider the n X n grids as pigeonholes.

- By the above property, 1

all the elements a; correspond to a distinct grid. e

m Consider the s X r submatrix.

- Sincen > s - r, for some i, the element a; corresponds to some grid
outside the s X r submatrix.

- Hence, either x; >sory; >r.




The Dilworth Lemma

for Partially Ordered Sets (Posets)




Partially Order Sets.

m A partial order on a set P Is a binary relation < that is reflexive,
antisymmetric, and transitive, i.e.,

- (reflexive) a < a, forall a € P,
- (antisymmetric) Ifa < b and b < a, then a = b.

- (transitive) Ifa<bandb < c, thena <

m Two elements a,b € P are said to be comparable if either a < b or b < a.




Chain and Antichain.

m Let P be a set with partial order <.

- Asubset C € P is called a chain,

If any pair of elements in C is comparable.

- Dually, a subset C < P is called an antichain,
If all the pairs of elements in C are not comparable.




Chain and Antichain.

m For example,
letP ={1,2,3,4,5a,b,c,d} and define the partial order < as
1<2<3<4<5 and

a <b<c < d.

- Then, {4,2,3} and {c, d} are two chains,

and {2, c} is an antichain.




Lemma 6 (Dilworth 1950).

Let P be a set with a partial order <.
If |[P| = sr + 1, then there exists either a chain of size s + 1 or
an antichain of size r + 1.

m Proof.

- Foranya € P,
let £(a) denote the length of the longest chain ending at a.

- Suppose that there exists no chain of size s + 1.
m Then #(a) < sforallae€P.

m We will show that, there exists an antichain of size r + 1.




- Foranya € P,
let £(a) denote the length of the longest chain ending at a.

- For1 <i<s,letA; be the set of elements a with £(a) = i.

m Then, 4; must be an antichain, forall 1 <i <.

- Consider any a,b € A; with a + b.
By definition, we have ¢(a) = #(b).

- If a and b are comparable, say, a < b,
then, we add b to the longest chain ending at a.

This gives a chain ending at a with size #(b) + 1 = ¢(a) + 1,

a contradiction.




Suppose that there exists no chain of size s + 1.

m Then f(a) <sforallaeP.

For 1 <i<s, let 4; be the set of elements a with £(a) = i.

m Then, 4; is an antichain, forall 1 <i <s.
m A,NA; =0 foralli#j.

m A, A, .., A forms a partition of P.

Since |P| = sr + 1,

by the pigeonhole principle, |A;| = r + 1 for some i.



Some Note.

m The proof given in the textbook is wrong.

- The greatest elements chosen in different maximal chains can be
identical, and hence, comparable.

For example,
the two maximal chains, {a, c,d} and {b, c, d},

d share the same greatest element d.




The Mantel's Theorem

How many edges can a triangle-free graph have?

Alternatively,
how many edges can we add to a graph without creating a triangle?




The Maximum Number of Edges In a Triangle-free Graph.

m Atriangle is a complete graph of 3 vertices.

/\

m We know that, bipartite graphs do not contain any triangle.

- So, n?/4 edges are possible,

achieved by complete bipartite graphs with two n/2 partite sets.

- It turns out that, n“/4 is also the best possible.




Theorem 7 (Mantel 1907).

If an n-vertex graph has more than n*/4 edges,
then it contains a triangle.

m Proof 1.

- Let ¢ = (V,E) with |V|=n and |E| = m.
- Assume that G has no triangles. We will show that m < n?/4.
m Considerany e = (x,y) € E.

The pigeonhole principle guarantees that Otherwise, x and y share

d(x)+d(y) <n. a common neighbor, and
they jointly form a triangle.




m Proof 1.

d(y)

d(x)

- LetG = (V,E) with |[V] =n and |E| = m > n?/4.
- Assume that ¢ has no triangles.
m Consideranye = (x,y) €EE.

The pigeonhole principle guarantees that

d(x)+d(y) <n.

m Summing over all the edges, we obtain

Otherwise, x and y share
a common neighbor, and
they jointly form a triangle.

Ed(x)2 = 2 (d(x) +d(y)) < mn.

XEV (x,y)EE

By the double counting principle.
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For any vector u, v € R",
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u=(11..,1)
Consider the two vectors .
v = (d(vl)i d(UZ)i oy d(vn))

2
IVI-Zd(x)Z > Zd(x) = it

xXeV xXeV

We have

Hence, m < n®/4. By the double counting principle,
ZXEV d(x) — Zm




Theorem 7 (Mantel 1907).

If an n-vertex graph has more than n*/4 edges,
then it contains a triangle.

m Proof 2.

- In the second proof, we count the number of edges using the
property of the maximum independent set.

- Let G = (V,E) with |V]| =n.
Assume that ¢ has no triangles.

m We will show that |E| < n? /4.




- Let ¢ = (V,E) with [V]| =n.

Assume that G has no triangles. If not, we get a triangle. }

- Hence,
forany v € V, the neighbors of v form an independent set.

- Let A € V be the largest independent set in G.

m None of vertex pairs in A is connected by an edge.

m Hence, the set B := 1V \ A meets every edge of G, and

Al + |BI\°
IE| sz:d(x) SZIAI = | 14| - |B| < (l l;rl |> =n2/4 .

S

[ Arithmetic and geometric mean inequality }




Turan’s Theorem

How many edges can a K,-free graph have?

Alternatively,
how many edges can we add to a graph without creating a clique of size £?




The Maximum Number of Edges in a K,-free Graph.

m A k-cligue, denoted K, is a complete graph on k vertices.

m [he Mantel’'s theorem states that, any K;-free graph has
at most n*/4 edges.

- What about k-cliques with k > 3 ?




Theorem 8 (Turan 1941).

If a graph G = (V, E) with n vertices contains no (k + 1)-cliques,

where k > 2, then 5
El<(1-2). 2
< 7l R

m Proof.

- We prove by induction on n.

- The case with n = 1 is trivial,
and the case k = 2 is proved by the Mantel’s theorem.

- Suppose that the inequality holds for graphs with at most n — 1 vertices.




The case with n = 1 is trivial,
and the case k = 2 is proved by the Mantel’s theorem.

Suppose that the inequality holds for graphs with at most n — 1 vertices.

Let ¢ = (V,E) be an n-vertex graph with no (k + 1)-cliques and
with a maximal number of edges.

m Adding any new edge to G will create a (k + 1)-clique.

m (G must contain at least one k-clique.

Let A be a k-cliqguein G,and let B :=V \ A.

m Letey, ep, eqp denote the number of edges in 4, in B, and
that between A and B, respectively.



- Let G = (V,E) be an n-vertex graph with no (k + 1)-cliques and
with a maximal number of edges.

m LetAbeak-cligueinG,andletB:=V \ A.

m Letey ep, ey p denote the number of edges in 4, in B, and
that between A and B, respectively.

m Wehave | e, =(5) =k(k—1)/2.

By the induction hypothesis, | eg < (1 — %) : (n_zk)z :

Since G has no (k + 1)-cliques,
each v € B Is adjacent to at most k — 1 vertices in A.

Hence, |e jp < (k—1) - (n—k).




Let ¢ = (V,E) be an n-vertex graph with no (k + 1)-cliques and
with a maximal number of edges.

m LetAbeak-cliqguein G,andlet B :=1 \ A.

m Letey ep, ey p denote the number of edges in 4, in B, and
that between A and B, respectively.

m \We obtain that

|E| = eA+eB+eA,B

k(k —1) 1\ (n—k)?
> +(1_E>' 5 + (k=DM —=k)

1ln2
k] 2
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