Combinatorial Mathematics

Mong－Jen Kao（高孟駿）
Monday 18：30－20：20

Outline

- The Pigeonhole principle
- The Erdős-Szekeres Theorem
- The Dilworth Lemma for Posets
- Mantel's Theorem
- Turán's Theorem

The Pigeonhole Principle

(aka Dirichlet's principle)

If a set of size at least $r s+1$ is partitioned into r sets, then some class receives at least $s+1$ elements.

Proposition 1.

In any graph, there exist two vertices of the same degree.

- Let $G=(V, E)$ be a graph with $|V|=n$.
- The degree of any vertex is between 0 and $n-1$.
- If there is a vertex with degree 0 , then there exists no vertex with degree $n-1$, and vice versa.
- There are at most $n-1$ different values for the vertex degrees, while there are n vertices.
- By the pigeonhole principle, at least two vertices have the same degree.

Independent Set \& Chromatic Number

- Let $G=(V, E)$ be a graph.
- Let $\alpha(G)$ denote the maximum size of any independent set for G.
- Let $\chi(G)$ denote the chromatic number of G,
i.e., the minimum number of colors required to color V such that, no adjacent vertices have the same color.
- Consider a coloring of V using $\chi(G)$ colors. Let $V_{1}, V_{2}, \ldots, V_{\chi(G)}$ be the partition of the vertices by their colors.
- For any $1 \leq i \leq \chi(G)$, the set V_{i} is an independent set for G.

Proposition 2.

In any graph G with n vertices, $n \leq \alpha(G) \cdot \chi(G)$.

- Proof 1.
- Consider a coloring of V that uses $\chi(G)$ colors and $V_{1}, V_{2}, \ldots, V_{\chi(G)}$ be the partition of the vertices by their colors.
- Since V_{i} is an independent set, $\left|V_{i}\right| \leq \alpha(G)$.
- Hence, $n=\sum_{i}\left|V_{i}\right| \leq \alpha(G) \cdot \chi(G)$.

Proposition 2.

In any graph G with n vertices, $n \leq \alpha(G) \cdot \chi(G)$.

- Proof 2.
- Consider a coloring of V that uses $\chi(G)$ colors and $V_{1}, V_{2}, \ldots, V_{\chi(G)}$ be the partition of the vertices by their colors.
- By the pigeonhole principle, there exists some i with $\left|V_{i}\right| \geq \frac{n}{\chi(G)}$.
- Since V_{i} is an independent set, $\alpha(G) \geq\left|V_{i}\right|$.
- By the above two inequalities, $n \leq \alpha(G) \cdot \chi(G)$.

Proposition 3.

Let G be a graph with n vertices. If every vertex has a degree of at least $(n-1) / 2$, then G is connected.

- Proof.
- We prove that, for any pair of vertices, say, x and y, either x and y are adjacent or have a common neighbor.

- If x and y are not adjacent, then there are at least $n-1$ edges connecting them to the remaining vertices.
- Since there are only $n-2$ other vertices, at least two of these $n-1$ edges connect to the same vertex.

Some Remark.

- The statement from Proposition 3 is the best possible.
- To see that, consider the graph that consists of two disjoint complete graphs, each of $n / 2$ vertices.

Then every vertex has degree $(n-2) / 2$, and the graph is disconnected.

- Note that, what we actually proved is that, if every vertex has degree at least $(n-1) / 2$, then the graph has diameter at most two.

The Erdős-Szekeres Theorem

Increasing / Decreasing Sequences

- Let $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a sequence of n different numbers.
- A subsequence of k terms of A is a sequence B of k distinct terms of A appearing in the same order in which they appear in A, i.e.,

$$
B=\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}\right), \text { where } i_{1}<i_{2}<\cdots<i_{k} .
$$

- A sequence is said to be increasing if $a_{1}<a_{2}<\cdots<a_{n}$ and decreasing if $a_{1}>a_{2}>\cdots>a_{n}$.

Theorem 5 (Erdős-Szekeres 1935).

Let $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a sequence of n different real numbers.
If $n \geq s r+1$, then either A has an increasing subsequence of length $s+1$ or a decreasing subsequence of length $r+1$.

- Proof. (due to Seidenberg 1959).

For any $1 \leq i \leq n$, associate a_{i} with a pair $\left(x_{i}, y_{i}\right)$, where

- x_{i} is the length of the longest increasing subsequence ending at a_{i}.
- y_{i} is the length of the longest decreasing subsequence starting at a_{i}.

For any $1 \leq i \leq n$, associate a_{i} with a pair $\left(x_{i}, y_{i}\right)$, where

- x_{i} is the length of the longest increasing subsequence ending at a_{i}.
- y_{i} is the length of the longest decreasing subsequence starting at a_{i}.

- For any $i \neq j$, say, $1 \leq i<j \leq n$, we have $\left(x_{i}, y_{i}\right) \neq\left(x_{j}, y_{j}\right)$.
- If $a_{i}<a_{j}$, then $x_{j} \geq x_{i}+1$.
- If $a_{i}>a_{j}$, then $y_{i} \geq y_{j}+1$.

The elements of the sequence are distinct, so one of the two conditions must hold.

■ For any $i \neq j$, say, $1 \leq i<j \leq n$, we have $\left(x_{i}, y_{i}\right) \neq\left(x_{j}, y_{j}\right)$.

- If $a_{i}<a_{j}$, then $x_{j} \geq x_{i}+1$.
- If $a_{i}>a_{j}$, then $y_{i} \geq y_{j}+1$.
- Consider the $n \times n$ grids as pigeonholes.
- By the above property, all the elements a_{i} correspond to a distinct grid.

- Consider the $s \times r$ submatrix.
- Since $n>s \cdot r$, for some i, the element a_{i} corresponds to some grid outside the $s \times r$ submatrix.
- Hence, either $x_{i}>s$ or $y_{i}>r$.

The Dilworth Lemma

for Partially Ordered Sets (Posets)

Partially Order Sets.

- A partial order on a set P is a binary relation \preccurlyeq that is reflexive, antisymmetric, and transitive, i.e.,
- (reflexive) $a \leqslant a$, for all $a \in P$,
- (antisymmetric) If $a \preccurlyeq b$ and $b \preccurlyeq a$, then $a=b$.
- (transitive) If $a \leqslant b$ and $b \leqslant c$, then $a \leqslant c$.
- Two elements $a, b \in P$ are said to be comparable if either $a \leqslant b$ or $b \leqslant a$.

Chain and Antichain.

- Let P be a set with partial order \leqslant.
- A subset $C \subseteq P$ is called a chain, if any pair of elements in C is comparable.
- Dually, a subset $C \subseteq P$ is called an antichain, if all the pairs of elements in C are not comparable.

Chain and Antichain.

- For example,
let $P=\{1,2,3,4,5, a, b, c, d\}$ and define the partial order \leq as

$$
\begin{gathered}
1 \leq 2 \leq 3 \leq 4 \leq 5, \text { and } \\
a \leq b \leq c \leq d .
\end{gathered}
$$

- Then, $\{4,2,3\}$ and $\{c, d\}$ are two chains, and $\{2, c\}$ is an antichain.

Lemma 6 (Dilworth 1950).

Let P be a set with a partial order \leqslant.
If $|P| \geq s r+1$, then there exists either a chain of size $s+1$ or an antichain of size $r+1$.

- Proof.
- For any $a \in P$, let $\ell(a)$ denote the length of the longest chain ending at a.
- Suppose that there exists no chain of size $s+1$.
- Then $\ell(a) \leq s$ for all $a \in P$.
- We will show that, there exists an antichain of size $r+1$.
- For any $a \in P$,
let $\ell(a)$ denote the length of the longest chain ending at a.
- For $1 \leq i \leq s$, let A_{i} be the set of elements a with $\ell(a)=i$.
- Then, $\boldsymbol{A}_{\boldsymbol{i}}$ must be an antichain, for all $1 \leq i \leq s$.
- Consider any $a, b \in A_{i}$ with $a \neq b$.

By definition, we have $\ell(a)=\ell(b)$.

- If a and b are comparable, say, $a \preccurlyeq b$, then, we add b to the longest chain ending at a.

This gives a chain ending at a with size $\ell(b)+1=\ell(a)+1$, a contradiction.

- Suppose that there exists no chain of size $s+1$.
- Then $\ell(a) \leq s$ for all $a \in P$.
- For $1 \leq i \leq s$, let A_{i} be the set of elements a with $\ell(a)=i$.
- Then, $\boldsymbol{A}_{\boldsymbol{i}}$ is an antichain, for all $1 \leq i \leq s$.
- $A_{i} \cap A_{j}=\emptyset$ for all $i \neq j$.
- $A_{1}, A_{2}, \ldots, A_{s}$ forms a partition of P.
- Since $|P| \geq s r+1$,
by the pigeonhole principle, $\left|A_{i}\right| \geq r+1$ for some i.

Some Note.

- The proof given in the textbook is wrong.
- The greatest elements chosen in different maximal chains can be identical, and hence, comparable.

For example,
the two maximal chains, $\{a, c, d\}$ and $\{b, c, d\}$, share the same greatest element d.

The Mantel's Theorem

How many edges can a triangle-free graph have?
Alternatively,
how many edges can we add to a graph without creating a triangle?

The Maximum Number of Edges in a Triangle-free Graph.

- A triangle is a complete graph of 3 vertices.

- We know that, bipartite graphs do not contain any triangle.
- So, $n^{2} / 4$ edges are possible, achieved by complete bipartite graphs with two $n / 2$ partite sets.
- It turns out that, $n^{2} / 4$ is also the best possible.

Theorem 7 (Mantel 1907).

If an n-vertex graph has more than $n^{2} / 4$ edges, then it contains a triangle.

- Proof 1.
- Let $G=(V, E)$ with $|V|=n$ and $|E|=m$.
- Assume that G has no triangles. We will show that $m \leq n^{2} / 4$.
- Consider any $e=(x, y) \in E$.

The pigeonhole principle guarantees that

$$
d(x)+d(y) \leq n
$$

Otherwise, x and y share a common neighbor, and they jointly form a triangle.

- Proof 1.
- Let $G=(V, E)$ with $|V|=n$ and $|E|=m>n^{2} / 4$.
- Assume that G has no triangles.
- Consider any $e=(x, y) \in E$.

The pigeonhole principle guarantees that

$$
d(x)+d(y) \leq n
$$

Otherwise, x and y share a common neighbor, and they jointly form a triangle.

- Summing over all the edges, we obtain

$$
\sum_{x \in V} d(x)^{2}=\sum_{(x, y) \in E}(d(x)+d(y)) \leq m n
$$

By the double counting principle.

- We obtain

For any vector $u, v \in \mathbb{R}^{n}$,

$$
|u \cdot v| \leq\|u\| \cdot\|v\| .
$$

- Apply the Cauchy-Schwarz inequality to lower-bound $\sum_{x \in V} d(x)^{2}$.

Consider the two vectors $\left\{\begin{array}{l}u=(1,1, \ldots, 1) \\ v=\left(d\left(v_{1}\right), d\left(v_{2}\right), \ldots, d\left(v_{n}\right)\right)\end{array}\right.$
We have

$$
|V| \cdot \sum_{x \in V} d(x)^{2} \geq\left(\sum_{x \in V} d(x)\right)^{2}=4 m^{2}
$$

Hence, $m \leq n^{2} / 4$.
By the double counting principle, $\sum_{x \in V} d(x)=2 m$.

Theorem 7 (Mantel 1907).

If an n-vertex graph has more than $n^{2} / 4$ edges, then it contains a triangle.

- Proof 2.
- In the second proof, we count the number of edges using the property of the maximum independent set.
- Let $G=(V, E)$ with $|V|=n$.

Assume that G has no triangles.

- We will show that $|E| \leq n^{2} / 4$.
- Let $G=(V, E)$ with $|V|=n$.

Assume that G has no triangles.

- Hence, for any $v \in V$, the neighbors of v form an independent set.
- Let $A \subseteq V$ be the largest independent set in G.
- None of vertex pairs in A is connected by an edge.
- Hence, the set $B:=V \backslash A$ meets every edge of \boldsymbol{G}, and
$|E| \leq \sum_{x \in B} d(x) \leq \sum_{x \in B}|A|=|A| \cdot|B| \leq\left(\frac{|A|+|B|}{2}\right)^{2}=n^{2} / 4$.

Turán's Theorem

How many edges can a K_{ℓ}-free graph have?
Alternatively,
how many edges can we add to a graph without creating a clique of size ℓ ?

The Maximum Number of Edges in a K_{ℓ}-free Graph.

- A k-clique, denoted K_{k}, is a complete graph on k vertices.
- The Mantel's theorem states that, any K_{3}-free graph has at most $n^{2} / 4$ edges.
- What about k-cliques with $k>3$?

Theorem 8 (Turán 1941).

If a graph $G=(V, E)$ with n vertices contains no ($k+1$)-cliques, where $k \geq 2$, then

$$
|E| \leq\left(1-\frac{1}{k}\right) \cdot \frac{n^{2}}{2} .
$$

- Proof.
- We prove by induction on n.
- The case with $n=1$ is trivial, and the case $k=2$ is proved by the Mantel's theorem.
- Suppose that the inequality holds for graphs with at most $n-1$ vertices.
- The case with $n=1$ is trivial, and the case $k=2$ is proved by the Mantel's theorem.
- Suppose that the inequality holds for graphs with at most $n-1$ vertices.
- Let $G=(V, E)$ be an n-vertex graph with no $(k+1)$-cliques and with a maximal number of edges.
- Adding any new edge to G will create a $(k+1)$-clique.
- G must contain at least one k-clique.

Let A be a k-clique in G, and let $B:=V \backslash A$.

- Let $e_{A}, e_{B}, e_{A, B}$ denote the number of edges in A, in B, and that between A and B, respectively.
- Let $G=(V, E)$ be an n-vertex graph with no $(k+1)$-cliques and with a maximal number of edges.
- Let A be a k-clique in G, and let $B:=V \backslash A$.
- Let $e_{A}, e_{B}, e_{A, B}$ denote the number of edges in A, in B, and that between A and B, respectively.
- We have $e_{A}=\binom{k}{2}=k(k-1) / 2$.

By the induction hypothesis, $e_{B} \leq\left(1-\frac{1}{k}\right) \cdot \frac{(n-k)^{2}}{2}$.
Since G has no $(k+1)$-cliques, each $v \in B$ is adjacent to at most $k-1$ vertices in A.

Hence, $\quad e_{A, B} \leq(k-1) \cdot(n-k)$.

- Let $G=(V, E)$ be an n-vertex graph with no $(k+1)$-cliques and with a maximal number of edges.
- Let A be a k-clique in G, and let $B:=V \backslash A$.
- Let $e_{A}, e_{B}, e_{A, B}$ denote the number of edges in A, in B, and that between A and B, respectively.
- We obtain that

$$
\begin{aligned}
|E| & =e_{A}+e_{B}+e_{A, B} \\
& \leq \frac{k(k-1)}{2}+\left(1-\frac{1}{k}\right) \cdot \frac{(n-k)^{2}}{2}+(k-1)(n-k) \\
& =\left(1-\frac{1}{k}\right) \cdot \frac{n^{2}}{2} .
\end{aligned}
$$

