Combinatorial Mathematics

Mong-Jen Kao (高孟駿) Monday 18:30 – 20:20

Outline

- The Pigeonhole principle
 - The Erdős-Szekeres Theorem
 - The Dilworth Lemma for Posets
 - Mantel's Theorem
 - Turán's Theorem

The Pigeonhole Principle

(aka Dirichlet's principle)

If a set of size at least rs + 1 is partitioned into r sets, then some class receives at least s + 1 elements.

An "*integer version*" of the <u>Averaging Principle</u>

Proposition 1.

In any graph, there exist two vertices of the same degree.

• Let
$$G = (V, E)$$
 be a graph with $|V| = n$.

- The degree of any vertex is between 0 and n-1.
 - If there is a vertex with degree 0, then there exists no vertex with degree n 1, and vice versa.
 - There are at most n 1 different values for the vertex degrees, while there are n vertices.
 - By the pigeonhole principle, at least two vertices have the same degree.

Independent Set & Chromatic Number

- Let G = (V, E) be a graph.
 - Let $\alpha(G)$ denote the maximum size of any independent set for G.
 - Let χ(G) denote the chromatic number of G,
 i.e., the minimum number of colors required to color V such that,
 no adjacent vertices have the same color.
 - Consider a coloring of V using $\chi(G)$ colors.

Let $V_1, V_2, \dots, V_{\chi(G)}$ be the partition of the vertices by their colors.

• For any $1 \le i \le \chi(G)$, the set V_i is an independent set for G.

Proposition 2.

In any graph G with n vertices, $n \leq \alpha(G) \cdot \chi(G)$.

- Proof 1.
 - Consider a coloring of *V* that uses $\chi(G)$ colors and $V_1, V_2, ..., V_{\chi(G)}$ be the partition of the vertices by their colors.
 - Since V_i is an independent set, $|V_i| \le \alpha(G)$.
 - Hence, $n = \sum_i |V_i| \le \alpha(G) \cdot \chi(G)$.

Proposition 2.

In any graph *G* with *n* vertices, $n \leq \alpha(G) \cdot \chi(G)$.

Proof 2.

- Consider a coloring of *V* that uses $\chi(G)$ colors and $V_1, V_2, ..., V_{\chi(G)}$ be the partition of the vertices by their colors.
- By the pigeonhole principle, there exists some *i* with $|V_i| \ge \frac{n}{\chi(G)}$.
- Since V_i is an independent set, $\alpha(G) \ge |V_i|$.
- By the above two inequalities, $n \leq \alpha(G) \cdot \chi(G)$.

Proposition 3.

Let *G* be a graph with *n* vertices. If every vertex has a degree of at least (n - 1)/2, then *G* is connected.

Proof.

- We prove that, for any pair of vertices, say, x and y,
 either x and y are adjacent or have a common neighbor.
- If x and y are not adjacent, then there are at least n 1 edges connecting them to the remaining vertices.
- Since there are only n 2 other vertices, at least two of these n - 1 edges connect to the same vertex.

Some Remark.

- The statement from Proposition 3 is the best possible.
 - To see that, consider the graph that consists of two disjoint complete graphs, each of n/2 vertices.

Then every vertex has degree (n-2)/2, and the graph is disconnected.

■ Note that, what we actually proved is that, if every vertex has degree at least (n-1)/2, then the graph has diameter at most two.

The Erdős-Szekeres Theorem

Increasing / Decreasing Sequences

- Let $A = (a_1, a_2, ..., a_n)$ be a sequence of *n* different numbers.
 - A subsequence of k terms of A is a sequence B of k distinct terms of A appearing in the same order in which they appear in A, i.e.,

$$B = (a_{i_1}, a_{i_2}, \dots, a_{i_k})$$
, where $i_1 < i_2 < \dots < i_k$.

• A sequence is said to be increasing if $a_1 < a_2 < \cdots < a_n$ and decreasing if $a_1 > a_2 > \cdots > a_n$.

Theorem 5 (Erdős-Szekeres 1935).

Let $A = (a_1, a_2, ..., a_n)$ be a sequence of n different real numbers. If $n \ge sr + 1$, then either A has an increasing subsequence of length s + 1 or a decreasing subsequence of length r + 1.

<u>Proof.</u> (due to Seidenberg 1959).

For any $1 \le i \le n$, associate a_i with a pair (x_i, y_i) , where

- x_i is the length of the <u>longest increasing subsequence</u> ending at a_i .
- y_i is the length of the <u>longest decreasing subsequence</u> starting at a_i .

For any $1 \le i \le n$, associate a_i with a pair (x_i, y_i) , where

- x_i is the length of the *longest increasing subsequence* ending at a_i .
- y_i is the length of the <u>longest decreasing subsequence</u> starting at a_i .

For any $i \neq j$, say, $1 \leq i < j \leq n$, we have $(x_i, y_i) \neq (x_j, y_j)$.

- If $a_i < a_j$, then $x_j \ge x_i + 1$.
- If $a_i > a_j$, then $y_i \ge y_j + 1$.

The elements of the sequence are distinct, so one of the two conditions must hold.

For any $i \neq j$, say, $1 \leq i < j \leq n$, we have $(x_i, y_i) \neq (x_j, y_j)$.

- If $a_i < a_j$, then $x_j \ge x_i + 1$.
- If $a_i > a_j$, then $y_i \ge y_j + 1$.
- Consider the $n \times n$ grids as pigeonholes.
 - By the above property, all the elements a_i correspond to a distinct grid.
- Consider the $s \times r$ submatrix.
 - Since $n > s \cdot r$, for some *i*, the element a_i corresponds to some grid outside the $s \times r$ submatrix.
 - Hence, either $x_i > s$ or $y_i > r$.

The Dilworth Lemma

for Partially Ordered Sets (Posets)

Partially Order Sets.

- A partial order on a set P is a binary relation ≤ that is reflexive, antisymmetric, and transitive, i.e.,
 - (reflexive) $a \leq a$, for all $a \in P$,
 - (antisymmetric) If $a \leq b$ and $b \leq a$, then a = b.
 - (transitive) If $a \leq b$ and $b \leq c$, then $a \leq c$.
- Two elements $a, b \in P$ are said to be comparable if either $a \leq b$ or $b \leq a$.

Chain and Antichain.

- Let *P* be a set with partial order \leq .
 - A subset $C \subseteq P$ is called a *chain*, if any pair of elements in *C* is comparable.
 - Dually, a subset $C \subseteq P$ is called an *antichain*, if all the pairs of elements in *C* are not comparable.

Chain and Antichain.

■ For example,

let $P = \{1, 2, 3, 4, 5, a, b, c, d\}$ and define the partial order \leq as

 $1 \le 2 \le 3 \le 4 \le 5$, and

 $a \leq b \leq c \leq d.$

Then, {4,2,3} and {*c*, *d*} are two chains,
and {2, *c*} is an antichain.

Lemma 6 (Dilworth 1950).

Let *P* be a set with a partial order \leq . If $|P| \geq sr + 1$, then there exists either a chain of size s + 1 or an antichain of size r + 1.

Proof.

- For any $a \in P$,

let $\ell(a)$ denote the length of the longest chain ending at a.

- Suppose that there exists no chain of size s + 1.
 - Then $\ell(a) \leq s$ for all $a \in P$.
 - We will show that, there exists an antichain of size r + 1.

- For any $a \in P$,

let $\ell(a)$ denote the length of the longest chain ending at *a*.

- For $1 \le i \le s$, let A_i be the set of elements a with $\ell(a) = i$.

• Then, A_i must be an antichain, for all $1 \le i \le s$.

- Consider any $a, b \in A_i$ with $a \neq b$. By definition, we have $\ell(a) = \ell(b)$.
- If *a* and *b* are comparable, say, *a* ≤ *b*,
 then, we add *b* to the longest chain ending at *a*.

This gives a chain ending at *a* with size $\ell(b) + 1 = \ell(a) + 1$, a contradiction.

- Suppose that there exists no chain of size s + 1.

Then
$$\ell(a) \leq s$$
 for all $a \in P$.

- For $1 \le i \le s$, let A_i be the set of elements a with $\ell(a) = i$.
 - Then, A_i is an antichain, for all $1 \le i \le s$.
 - $A_i \cap A_j = \emptyset$ for all $i \neq j$.
 - A_1, A_2, \dots, A_s forms a partition of *P*.
- Since $|P| \ge sr + 1$,

by the pigeonhole principle, $|A_i| \ge r + 1$ for some *i*.

Some Note.

- The proof given in the textbook is wrong.
 - The greatest elements chosen in different maximal chains can be identical, and hence, comparable.

For example,

the two maximal chains, $\{a, c, d\}$ and $\{b, c, d\}$, share the same greatest element *d*.

The Mantel's Theorem

How many edges can a *triangle-free graph* have?

Alternatively,

how many edges can we add to a graph without creating a triangle?

The Maximum Number of Edges in a Triangle-free Graph.

■ A triangle is a complete graph of 3 vertices.

- We know that, bipartite graphs do not contain any triangle.
 - So, $n^2/4$ edges are possible, achieved by complete bipartite graphs with two n/2 partite sets.
 - It turns out that, $n^2/4$ is also the best possible.

Theorem 7 (Mantel 1907).

If an *n*-vertex graph has more than $n^2/4$ edges, then it contains a triangle.

Proof 1.

- Let G = (V, E) with |V| = n and |E| = m.
- Assume that G has no triangles. We will show that $m \le n^2/4$.
 - Consider any $e = (x, y) \in E$.

The pigeonhole principle guarantees that

 $d(x) + d(y) \le n \, .$

Otherwise, *x* and *y* share a common neighbor, and they jointly form a triangle.

Proof 1.

- Let G = (V, E) with |V| = n and $|E| = m > n^2/4$.
- Assume that *G* has no triangles.
 - Consider any $e = (x, y) \in E$.

The pigeonhole principle guarantees that

 $d(x) + d(y) \le n \,.$

Otherwise, x and y share a common neighbor, and they jointly form a triangle.

 $x \in I$

Summing over all the edges, we obtain

$$d(x)^2 = \sum_{(x,y)\in E} (d(x) + d(y)) \leq mn.$$

By the double counting principle.

Consider the two vectors $\begin{cases} u = (1, 1, ..., 1) \\ v = (d(v_1), d(v_2), ..., d(v_n)) \end{cases}$. We have $|V| \cdot \sum_{x \in V} d(x)^2 \ge \left(\sum_{x \in V} d(x)\right)^2 = 4m^2.$

Hence, $m \le n^2/4$.

By the double counting principle, $\sum_{x \in V} d(x) = 2m.$

Theorem 7 (Mantel 1907).

If an *n*-vertex graph has more than $n^2/4$ edges, then it contains a triangle.

Proof 2.

- In the second proof, we count the number of edges using the property of the *maximum independent set*.
- Let G = (V, E) with |V| = n.

Assume that *G* has no triangles.

• We will show that $|E| \le n^2/4$.

- Let G = (V, E) with |V| = n. Assume that *G* has no triangles.

If not, we get a triangle.

- Hence,

for any $v \in V$, the neighbors of v form <u>an independent set</u>.

- Let $A \subseteq V$ be the largest independent set in G.
 - None of vertex pairs in *A* is connected by an edge.
 - Hence, the set $B \coloneqq V \setminus A$ meets every edge of G, and

$$|E| \le \sum_{x \in B} d(x) \le \sum_{x \in B} |A| = |A| \cdot |B| \le \left(\frac{|A| + |B|}{2}\right)^2 = n^2/4 .$$

Arithmetic and geometric mean inequality

Turán's Theorem

How many edges can a K_{ℓ} -free graph have?

Alternatively,

how many edges can we add to a graph without creating a clique of size ℓ ?

The Maximum Number of Edges in a K_{ℓ} -free Graph.

• A k-clique, denoted K_k , is a complete graph on k vertices.

- The Mantel's theorem states that, any K_3 -free graph has at most $n^2/4$ edges.
 - What about *k*-cliques with k > 3 ?

<u>Theorem 8 (Turán 1941).</u>

If a graph G = (V, E) with *n* vertices contains no (k + 1)-cliques, where $k \ge 2$, then $|E| \le \left(1 - \frac{1}{k}\right) \cdot \frac{n^2}{2}$.

Proof.

- We prove by induction on *n*.
- The case with n = 1 is trivial, and the case k = 2 is proved by the Mantel's theorem.
- Suppose that the inequality holds for graphs with at most n 1 vertices.

- The case with n = 1 is trivial, and the case k = 2 is proved by the Mantel's theorem.
- Suppose that the inequality holds for graphs with at most n 1 vertices.
- Let G = (V, E) be an *n*-vertex graph with no (k + 1)-cliques and with a maximal number of edges.
 - Adding any new edge to G will create a (k + 1)-clique.
 - G must contain at least one k-clique.

Let *A* be a *k*-clique in *G*, and let $B \coloneqq V \setminus A$.

• Let e_A , e_B , $e_{A,B}$ denote the number of edges in A, in B, and that between A and B, respectively.

- Let G = (V, E) be an *n*-vertex graph with no (k + 1)-cliques and with a maximal number of edges.
 - Let A be a k-clique in G, and let $B := V \setminus A$.
 - Let e_A , e_B , $e_{A,B}$ denote the number of edges in A, in B, and that between A and B, respectively.

• We have
$$e_A = \binom{k}{2} = k(k-1)/2$$
.

By the induction hypothesis, $e_B \leq \left(1 - \frac{1}{k}\right) \cdot \frac{(n-k)^2}{2}$.

Since *G* has no (k + 1)-cliques,

each $v \in B$ is adjacent to at most k - 1 vertices in A.

Hence, $e_{A,B} \leq (k-1) \cdot (n-k)$.

- Let G = (V, E) be an *n*-vertex graph with no (k + 1)-cliques and with a maximal number of edges.
 - Let A be a k-clique in G, and let $B \coloneqq V \setminus A$.

2

k]

• Let e_A , e_B , $e_{A,B}$ denote the number of edges in A, in B, and that between A and B, respectively.

We obtain that

$$|E| = e_A + e_B + e_{A,B}$$

$$\leq \frac{k(k-1)}{2} + \left(1 - \frac{1}{k}\right) \cdot \frac{(n-k)^2}{2} + (k-1)(n-k)$$
$$= \left(1 - \frac{1}{k}\right) \cdot \frac{n^2}{2}$$