Combinatorial Mathematics

Mong－Jen Kao（高孟駿）
Monday 18：30－20：20

Outline

- Systems of Distinct Representatives
- Hall's Matching / Marriage Theorem
- The König-Egeváry Theorem

System of Distinct Representatives

Distinct Representative of Sets in a Family

- Let $F=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ be a set family.
- The elements $x_{1}, x_{2}, \ldots, x_{m}$ is called a set of distinct representatives for F, if the following two conditions hold.
- $x_{i} \in S_{i}$ for all $1 \leq i \leq m$.
- The elements $x_{1}, x_{2}, \ldots, x_{m}$ are distinct, i.e., $x_{i} \neq x_{j}$ for all $i \neq j$.

An Equivalent Formulation

- Let $G=(A, B, E)$ be a bipartite graph with partite sets A and B.
- A set of edges $M \subseteq E$ is called a matching, if all the endpoints of the edges in M are distinct.
- We say that a vertex $v \in A \cup B$ is matched by M, if it is incident to some edge in M.
- A matching M is called a matching for A, if it matches all the vertices in A.

Existence of Distinct Representative

- A natural question is,

When do we have a set of distinct representatives?

- Alternatively,

When can we be sure that, a matching for a partite set exists?

Hall's Matching Condition

The necessary and sufficient condition for a matching to exist.

Theorem 5.1 (Hall's Theorem).

The set family $S_{1}, S_{2}, \ldots, S_{m}$ has a set of distinct representatives if and only if

$$
\begin{equation*}
\left|\bigcup_{i \in I} s_{i}\right| \geq|I| \text { for all } I \subseteq\{1,2, \ldots, m\} \tag{*}
\end{equation*}
$$

- It is clear that,
(*) is a necessary condition for distinct representatives to exist.
- Surprisingly, the obvious necessary condition is also sufficient.

Some Remarks.

- For bipartite graph $G=(A, B, E)$, Hall's theorem translates to the following.
- There is a matching for A if and only if

$$
|N(U)| \geq|U|, \text { for all } U \subseteq A
$$

i.e., for any $U \subseteq A$, there is always a sufficient number of candidates to be matched to in B.

Theorem 5.1 (Hall's Theorem).

The set family $S_{1}, S_{2}, \ldots, S_{m}$ has a set of distinct representatives
if and only if

$$
\begin{equation*}
\left|\bigcup_{i \in I} s_{i}\right| \geq|I| \text { for all } I \subseteq\{1,2, \ldots, m\} . \tag{*}
\end{equation*}
$$

- Proof.
- The direction (\Rightarrow) is clear.
- We prove the direction (\Longleftarrow) by induction on m. The case $m=1$ holds trivially.
- Assume that the statement holds for families with fewer than m sets.
- Proof. (continue)
- Assume that the statement holds for families with fewer than m sets.

We have the following two cases.
There are always more (candidates) than we need.

1. For each k, where $1 \leq k<m$, the union of any k sets contains more than k elements.
2. For some k, where $1 \leq k<m$, the union of some k sets contains exactly k elements.

For some combination, the number of candidates is tight.

- We construct the set of representatives as follows.

1. For each k, where $1 \leq k<m$,
the union of any k sets contains more than k elements.

- Pick an arbitrary $x \in S_{1}$ to be the representative for S_{1}.

Remove x from all the remaining $m-1$ sets.

- Then, the union of any k remaining sets, where $1 \leq k \leq m-1$, still contains at least k elements.
- By the induction hypothesis, there exist distinct representatives, other than x, for the remaining sets.

Together we have a set of distinct representatives for $S_{1}, S_{2}, \ldots, S_{m}$.
2. For some k, where $1 \leq k<m$, the union of some k sets contains exactly k elements.

The condition holds initially.

We remove a minimum number of candidates.

So, there's still an adequate number of candidates left.

- By the induction hypothesis, there exist k distinct representatives for these sets.

Remove the k elements from the remaining $m-k$ sets.

- Then, the union of any s remaining sets, where $1 \leq s \leq m-\mathrm{k}$, must contains at least s elements.
- If not, the union of these s sets with the above k sets contains less than $s+k$ elements, a contradiction.
- By induction hypothesis, there exist distinct representatives for these remaining $m-k$ sets.

The König-Egeváry Min-Max Theorem

In bipartite graphs, the size of the maximum matching is equal to the size of the minimum vertex cover.

Vertex Cover of a Graph.

- Let $G=(V, E)$ be a graph.
- A vertex cover of G is a subset $U \subseteq V$ of vertices such that, any edge $e \in E$ has at least one endpoint in U.
- Intuitively, we use the vertices in U to cover the edges in E.
- We want to select as few vertices as possible to cover the edges in the graph.

Theorem 5.5 (König-Egeváry 1931).

In a bipartite graph, the size of maximum matching is equal to the size of minimum vertex cover.

Proof.

- Let $G=(U, V, E)$ be a bipartite graph.
- Let M and C be a maximum matching and a minimum vertex cover for G, respectively.
- It is clear that $|C| \geq|M|$.
- The endpoints of the edges in M are distinct.
- It takes at least one vertex to cover each edge in M.

The matching M

Theorem 5.5 (König-Egeváry 1931).

In a bipartite graph, the size of maximum matching is equal to the size of minimum vertex cover.

Proof.

- It suffices to prove that $|M| \geq|C|$.
- Let $A:=U \cap C$ and $B:=V \cap C$.
- We will prove that, there exists a matching M_{A}
 that matches all the vertices in A to the vertices in $V \backslash B$.

Proof.

- It suffices to prove that $|M| \geq|C|$.
- Let $A:=U \cap C$ and $B:=V \cap C$.
- We will prove that, there exists a matching M_{A}
 that matches all the vertices in A to the vertices in $V \backslash B$.
- If the above is true, then by a similar argument, there exists a matching M_{B} for B to $U \backslash A$.
- The endpoints of the edges in $M_{A} \cup M_{B}$ are distinct.
- So, $M_{A} \cup M_{B}$ is a matching of size $|A|+|B|=|C|$.
- Hence, $|M| \geq|C|$.

It suffices to prove that, there exists a matching M_{A} that matches all the vertices in A to the vertices in $V \backslash B$.

- Suppose that there exists no such matching.
- Then, by Hall's matching theorem, there exists some $D \subseteq A$, such that

$$
|N(D) \cap(V \backslash B)|<|D| .
$$

- Indeed, if $|N(D) \cap(V \backslash B)| \geq|D|$ holds for all $D \subseteq A$, then there exists a matching from A to $V \backslash B$.
- Since there is no such matching, there must be such a $D \subseteq A$ with $|N(D) \cap(V \backslash B)|<|D|$.

It suffices to prove that, there exists a matching M_{A} that matches all the vertices in A to the vertices in $V \backslash B$.

- If not, there exists some $D \subseteq A$, such that
$|N(D) \cap(V \backslash B)|<|D|$.
- Let $\widetilde{D}:=N(D) \cap(V \backslash B)$, then $|\widetilde{D}|<|D|$.

- Observe that, $((A \backslash D) \cup \widetilde{D}) \cup B$ is a valid vertex cover for G.
- There are four categories of edges in G.
D is replaceable by \widetilde{D}.
- $E_{A, B}, E_{U \backslash A, B}:$ covered by B.
- $E_{A \backslash D, V \backslash B}$: covered by $A \backslash D$.
- $E_{D, \widetilde{D}}:$ covered by \widetilde{D}.

Since $C=A \cup B$ is a vertex cover, there is not edge between $U \backslash A$ and $V \backslash B$.

It suffices to prove that, there exists a matching M_{A} that matches all the vertices in A to the vertices in $V \backslash B$.

- If not, there exists some $D \subseteq A$, such that

$$
|N(D) \cap(V \backslash B)|<|D|
$$

- Let $\widetilde{D}:=N(D) \cap(V \backslash B)$, then $|\widetilde{D}|<|D|$.
- Then, $((A \backslash D) \cup \widetilde{D}) \cup B$ is a valid vertex cover with size strictly smaller than $C=A \cup B$, a contradiction.

