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m Systems of Distinct Representatives
- Hall's Matching / Marriage Theorem

- The Konig-Egevary Theorem




System of Distinct Representatives




Distinct Representative of Sets in a Family

m LetF ={5,5,,..,5,} be a set family.

m The elements x4, x,, ..., X, IS called a set of distinct representatives
for F, if the following two conditions hold.

- x; €8 forall1 <i <m.

- The elements x4, x,, ..., x,,, are distinct, i.e., x; # x; forall i # j.




An Equivalent Formulation

m Let G = (4, B, E) be a bipartite graph with partite sets A and B.

m Asetofedges M c E is called a matching,
If all the endpoints of the edges in M are distinct.

- We say that a vertex v € A U B Is matched by M,
If it Is incident to some edge in M.

- A matching M is called a matching for A4,
If it matches all the vertices in A.




Existence of Distinct Representative

m A natural question is,

When do we have a set of distinct representatives?

m Alternatively,

When can we be sure that, a matching for a partite set exists?




Hall's Matching Condition

The necessary and sufficient condition for a matching to exist.




Theorem 5.1 (Hall’s Theorem).

The set family 53, 5,, ..., S;,; has a set of distinct representatives
If and only if
USi > |I| foralll €{1,2,..,m}. (*)

L€l

m [tis clear that,
(*) Is a necessary condition for distinct representatives to exist.

- Surprisingly, the obvious necessary condition is also sufficient.




Some Remarks.

m For bipartite graph ¢ = (4, B, E),
Hall's theorem translates to the following.

- There Is a matching for A if and only If

IN(U)| = |U|, forall U € A.

l.e., forany U C A, there is always a sufficient number of
candidates to be matched to in B.

IN(D)| = |U]



Theorem 5.1 (Hall’s Theorem).

The set family 53, 5,, ..., S;,; has a set of distinct representatives
If and only if
USi > |I| foralll €{1,2,..,m}. (*)

L€l

m Proof.

- The direction (=) is clear.

- We prove the direction (<) by induction on m.
The case m = 1 holds trivially.

- Assume that the statement holds for families with fewer than m sets.




m Proof. (continue)

- Assume that the statement holds for families with fewer than m sets.

We have the following two cases. There are always
more (candidates) than we need.

1. Foreach k,where 1 <k <m,
the union of any k sets contains more than k elements.

2. Forsome k, where 1 < k <m,
the union of some k sets contains exactly k elements.

For some combination,
the number of candidates is tight.




- We construct the set of representatives as follows.

We remove at most
one element from

each set.

1.

For each k, where 1 < k < m,
the union of any k sets contains more than k elements.

Pick an arbitrary x € S; to be the representative for ;.

Remove x from all the remaining m — 1 sets.

Then, the union of any k remaining sets, where 1 <k <m — 1,
still contains at least k elements.

By the induction hypothesis, there exist distinct representatives,
other than x, for the remaining sets.

Together we have a set of distinct representatives for Sy, S,, ..., Si,,.



2. Forsome k,where 1 <k <m,
the union of some k sets contains exactly k elements.

The condition holds - By the induction hypothesis,
initially. there exist k distinct representatives for these sets.
l Remove the k elements from the remaining m — k sets.

We remove a

. - Then, the union of any s remaining sets, where 1 < s < m — Kk,
minimum number of

candidates must contains at least s elements.
[ ] m If not, the union of these s sets with the above k sets contains
So, there’s still an less than s + k elements, a contradiction.

adequate number of _ _ _ _ o |
vy - By induction hypothesis, there exist distinct representatives

I for these remaining m — k sets.




The Konig-Egevary Min-Max Theorem

In bipartite graphs, the size of the maximum matching is equal to
the size of the minimum vertex cover.




Vertex Cover of a Graph.

m LetG = (V,E) be a graph.

m Avertex cover of G Is a subset U € V of vertices such that,
any edge e € E has at least one endpoint in U.

- Intuitively, we use the vertices in U to cover the edges in E.

m We want to select as few vertices as possible to cover the edges In
the graph.




Theorem 5.5 (K6nig-Egevary 1931).

In a bipartite graph, the size of maximum matching is equal to
the size of minimum vertex cover.

Proof.

m LetG = (U,V,E) be a bipartite graph.

- Let M and C be a maximum matching and a minimum vertex cover
for G, respectively.

- ltis clear that |C| = |[M]|. ./

m The endpoints of the edges in M are distinct. ><

m It takes at least one vertex to cover each edge in M.

The matching M




Theorem 5.5 (K6nig-Egevary 1931).

In a bipartite graph, the size of maximum matching is equal to
the size of minimum vertex cover.

Proof.

m It suffices to prove that |[M| = |C].

- LetA=UnCandB=VnC.

- We will prove that, there exists a matching M,
that matches all the vertices in A to the vertices in V \ B.




Proof.

m It suffices to prove that |[M| > |C].
- LetA:=UnCand B =V nC.

- We will prove that, there exists a matching M,
that matches all the vertices in A to the vertices in V \ B.

- If the above is true, then
by a similar argument, there exists a matching My for B to U \ A.

- The endpoints of the edges in M, U My are distinct.
m So, M, U Mg is a matching of size |A| + |B| = |C].

m Hence, |M| = |C].




It suffices to prove that, there exists a matching M,
that matches all the vertices in A to the vertices in V \ B.

m Suppose that there exists no such matching.

- Then, by Hall's matching theorem,
there exists some D € A, such that

| N(D) n (V\B) | < |D|.

- Indeed, if IN(D) n (V \ B) | = |D| holds for all D € A,
then there exists a matching from Ato V \ B.

- Since there is no such matching, there must be
suchaD € Awith [N(D)n(V\B)|<|D]|.




It suffices to prove that, there exists a matching M,

that matches all the vertices in A to the vertices in V \ B.

m If not, there exists some D C A, such that
| N(D) n (W\B) | < |D].

- LetD:=N(D)n (V\B), then |D| <|D|.

- Observe that, ((A \D) U 5) U B is a valid vertex cover for G.

m There are four categories of edges in G. N
D is replaceable by D.

- Eyp, Ey\ap : COvered by B.

- Egppy\p - covered by A\ D.
Since C = AU B is a vertex cover,

- ED,E : covered by D. there is not edge between U\ Aand I/ \ B.




It suffices to prove that, there exists a matching M,
that matches all the vertices in A to the vertices in V \ B.

m If not, there exists some D € A, such that
| N(D) n (V\B) | < |D].

- LetD :=N(D)n (V\B), then |D| <|D|.

- Then, ((A \D) U 5) U B is a valid vertex cover

with size strictly smaller than € = A U B,

a contradiction.

D is replaceable by D.




