Combinatorial Mathematics

Mong-Jen Kao (高孟駿) Monday 18:30 – 20:20

Outline

- Systems of Distinct Representatives
 - Hall's Matching / Marriage Theorem
 - The König-Egeváry Theorem

System of Distinct Representatives

Distinct Representative of Sets in a Family

- Let $F = \{S_1, S_2, \dots, S_m\}$ be a set family.
- The elements $x_1, x_2, ..., x_m$ is called a set of distinct representatives for *F*, if the following two conditions hold.
 - $x_i \in S_i$ for all $1 \le i \le m$.
 - The elements $x_1, x_2, ..., x_m$ are distinct, i.e., $x_i \neq x_j$ for all $i \neq j$.

An Equivalent Formulation

- Let G = (A, B, E) be a bipartite graph with partite sets A and B.
- A set of edges $M \subseteq E$ is called a matching, if all the endpoints of the edges in M are distinct.
 - We say that a vertex v ∈ A ∪ B is matched by M,
 if it is incident to some edge in M.
 - A matching *M* is called a matching for *A*,
 if it matches all the vertices in *A*.

Existence of Distinct Representative

A natural question is,

When do we have a set of distinct representatives?

Alternatively,

When can we be sure that, <u>a matching for a partite set exists</u>?

Hall's Matching Condition

The necessary and sufficient condition for a matching to exist.

Theorem 5.1 (Hall's Theorem).

The set family $S_1, S_2, ..., S_m$ has a set of distinct representatives *if and only if*

$$\left| \bigcup_{i \in I} S_i \right| \ge |I| \quad \text{for all } I \subseteq \{1, 2, \dots, m\} \,. \qquad (*)$$

It is clear that,

(*) is a necessary condition for distinct representatives to exist.

- Surprisingly, the obvious necessary condition is also sufficient.

Some Remarks.

- For bipartite graph G = (A, B, E),
 Hall's theorem translates to the following.
 - There is a matching for A if and only if $|N(U)| \ge |U|$, for all $U \subseteq A$.

i.e., for any $U \subseteq A$, there is always a sufficient number of candidates to be matched to in *B*.

Theorem 5.1 (Hall's Theorem).

The set family $S_1, S_2, ..., S_m$ has a set of distinct representatives *if and only if*

$$\left| \bigcup_{i \in I} S_i \right| \ge |I| \quad \text{for all } I \subseteq \{1, 2, \dots, m\} \,. \tag{*}$$

Proof.

- The direction (\Rightarrow) is clear.
- We prove the direction (⇐) by induction on m.
 The case m = 1 holds trivially.
- Assume that the statement holds for families with fewer than *m* sets.

Proof. (continue)

- Assume that the statement holds for families with fewer than *m* sets.

We have the following two cases.

1. For each k, where $1 \le k < m$,

There are <u>always</u> more (candidates) than we need.

the union of any k sets contains more than k elements.

2. For some k, where $1 \le k < m$,

the union of some k sets contains exactly k elements.

- We construct the set of representatives as follows.
 - 1. For each k, where $1 \le k < m$, the union of any k sets **contains more than k elements**.
 - Pick an arbitrary $x \in S_1$ to be the representative for S_1 . Remove *x* from all the remaining m - 1 sets.

We remove <u>at most</u> <u>one element</u> from each set.

- Then, the union of any k remaining sets, where $1 \le k \le m 1$, still contains at least k elements.
- By the induction hypothesis, there exist distinct representatives,
 other than x, for the remaining sets.

Together we have a set of distinct representatives for S_1, S_2, \dots, S_m .

2. For some k, where $1 \le k < m$,

the union of some k sets contains exactly k elements.

The condition holds initially.

We remove a minimum number of candidates .

So, there's still an adequate number of candidates left.

By the induction hypothesis,
 there exist k distinct representatives for these sets.

Remove the k elements from the remaining m - k sets.

- Then, the union of any *s* remaining sets, where $1 \le s \le m k$, *must contains at least s elements*.
 - If not, the union of these *s* sets with the above *k* sets contains less than s + k elements, a contradiction.
- By induction hypothesis, there exist distinct representatives for these remaining m k sets.

The König-Egeváry Min-Max Theorem

<u>In bipartite graphs</u>, the size of the *maximum matching* is equal to the size of the *minimum vertex cover*.

Vertex Cover of a Graph.

- Let G = (V, E) be a graph.
- A vertex cover of G is a subset $U \subseteq V$ of vertices such that, any edge $e \in E$ has at least one endpoint in U.
 - Intuitively, we use the vertices in U to cover the edges in E.
- We want to select as few vertices as possible to cover the edges in the graph.

Theorem 5.5 (König-Egeváry 1931).

In a bipartite graph, the size of *maximum matching* is equal to the size of *minimum vertex cover*.

Proof.

- Let G = (U, V, E) be a bipartite graph.
 - Let *M* and *C* be a maximum matching and a minimum vertex cover for *G*, respectively.
 - It is clear that $|C| \ge |M|$.
 - The endpoints of the edges in *M* are distinct.
 - It takes *at least one vertex* to cover *each edge in M*.

The matching M

Theorem 5.5 (König-Egeváry 1931).

In a bipartite graph, the size of *maximum matching* is equal to the size of *minimum vertex cover*.

Proof.

- It suffices to prove that $|M| \ge |C|$.
 - Let $A \coloneqq U \cap C$ and $B \coloneqq V \cap C$.
 - We will prove that, there exists a matching M_A that matches all the vertices in A to the vertices in $V \setminus B$.

Proof.

- It suffices to prove that $|M| \ge |C|$.
 - Let $A \coloneqq U \cap C$ and $B \coloneqq V \cap C$.
 - We will prove that, there exists a matching M_A that matches all the vertices in A to the vertices in $V \setminus B$.
 - If the above is true, then

by a similar argument, there exists a matching M_B for B to $U \setminus A$.

- The endpoints of the edges in $M_A \cup M_B$ are distinct.
 - So, $M_A \cup M_B$ is a matching of size |A| + |B| = |C|.
 - Hence, $|M| \ge |C|$.

It suffices to prove that, there exists a matching M_A that matches all the vertices in A to the vertices in $V \setminus B$.

- Suppose that there exists no such matching.
 - Then, by Hall's matching theorem, there exists some $D \subseteq A$, such that $| N(D) \cap (V \setminus B) | < |D|$.
 - Indeed, if $|N(D) \cap (V \setminus B)| \ge |D|$ holds for all $D \subseteq A$, then there exists a matching from A to $V \setminus B$.
 - Since there is no such matching, there must be such a $D \subseteq A$ with $|N(D) \cap (V \setminus B)| < |D|$.

It suffices to prove that, there exists a matching M_A that matches all the vertices in A to the vertices in $V \setminus B$.

■ If not, there exists some $D \subseteq A$, such that $| N(D) \cap (V \setminus B) | < |D|$.

- Let $\widetilde{D} := N(D) \cap (V \setminus B)$, then $|\widetilde{D}| < |D|$.
- Observe that, $((A \setminus D) \cup \widetilde{D}) \cup B$ is a valid vertex cover for *G*.
 - There are four categories of edges in G.
 - $E_{A,B}$, $E_{U\setminus A,B}$: covered by B.
 - $E_{A \setminus D, V \setminus B}$: covered by $A \setminus D$.
 - $E_{D,\widetilde{D}}$: covered by \widetilde{D} .

Since $C = A \cup B$ is a vertex cover, there is not edge between $U \setminus A$ and $V \setminus B$.

 $\left|\widetilde{D}\right| < \left|D\right|$ B D \overline{D} \overline{D} V

D is replaceable by \widetilde{D} .

It suffices to prove that, there exists a matching M_A that matches all the vertices in A to the vertices in $V \setminus B$.

- If not, there exists some $D \subseteq A$, such that $|N(D) \cap (V \setminus B)| < |D|$.
 - Let $\widetilde{D} \coloneqq N(D) \cap (V \setminus B)$, then $|\widetilde{D}| < |D|$.
 - Then, $((A \setminus D) \cup \widetilde{D}) \cup B$ is a valid vertex cover with size strictly smaller than $C = A \cup B$, a contradiction.

D is replaceable by \widetilde{D} .

