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Outline

■ Systems of Distinct Representatives

– Hall’s Matching / Marriage Theorem

– The König-Egeváry Theorem



System of Distinct Representatives



Distinct Representative of Sets in a Family

■ Let 𝐹 = 𝑆1, 𝑆2, … , 𝑆𝑚 be a set family.

■ The elements 𝑥1, 𝑥2, … , 𝑥𝑚 is called a set of distinct representatives 

for 𝐹, if the following two conditions hold.

– 𝑥𝑖 ∈ 𝑆𝑖 for all 1 ≤ 𝑖 ≤ 𝑚.

– The elements 𝑥1, 𝑥2, … , 𝑥𝑚 are distinct, i.e., 𝑥𝑖 ≠ 𝑥𝑗 for all 𝑖 ≠ 𝑗.



An Equivalent Formulation

■ Let 𝐺 = (𝐴, 𝐵, 𝐸) be a bipartite graph with partite sets 𝐴 and 𝐵.

■ A set of edges 𝑀 ⊆ 𝐸 is called a matching, 

if all the endpoints of the edges in 𝑀 are distinct.

– We say that a vertex 𝑣 ∈ 𝐴 ∪ 𝐵 is matched by 𝑀, 

if it is incident to some edge in 𝑀.

– A matching 𝑀 is called a matching for 𝐴, 

if it matches all the vertices in 𝐴.



Existence of Distinct Representative

■ A natural question is,

When do we have a set of distinct representatives?

■ Alternatively, 

When can we be sure that, a matching for a partite set exists?



Hall’s Matching Condition

The necessary and sufficient condition for a matching to exist.



■ It is clear that, 

(∗) is a necessary condition for distinct representatives to exist.

– Surprisingly, the obvious necessary condition is also sufficient.

Theorem 5.1 (Hall’s Theorem). 

The set family 𝑆1, 𝑆2, … , 𝑆𝑚 has a set of distinct representatives 

if and only if

ራ

𝑖∈𝐼

𝑆𝑖 ≥ 𝐼 for all 𝐼 ⊆ 1,2,… ,𝑚 . (∗)



Some Remarks.

■ For bipartite graph 𝐺 = (𝐴, 𝐵, 𝐸), 

Hall’s theorem translates to the following.

– There is a matching for 𝐴 if and only if

𝑁 𝑈 ≥ 𝑈 ,  for all 𝑈 ⊆ 𝐴.

i.e., for any 𝑈 ⊆ 𝐴, there is always a sufficient number of

candidates to be matched to in 𝐵.

𝐴

𝑈 𝑁(𝑈)

𝑁 𝑈 ≥ 𝑈



■ Proof.

– The direction (⟹) is clear. 

– We prove the direction (⟸) by induction on 𝑚.

The case 𝑚 = 1 holds trivially.

– Assume that the statement holds for families with fewer than 𝑚 sets.

Theorem 5.1 (Hall’s Theorem). 

The set family 𝑆1, 𝑆2, … , 𝑆𝑚 has a set of distinct representatives 

if and only if

ራ

𝑖∈𝐼

𝑆𝑖 ≥ 𝐼 for all 𝐼 ⊆ 1,2,… ,𝑚 . (∗)



■ Proof. (continue)

– Assume that the statement holds for families with fewer than 𝑚 sets.

We have the following two cases.

1. For each 𝑘, where 1 ≤ 𝑘 < 𝑚, 

the union of any 𝑘 sets contains more than 𝑘 elements.

2. For some 𝑘, where 1 ≤ 𝑘 < 𝑚,

the union of some 𝑘 sets contains exactly 𝑘 elements.

There are always

more (candidates) than we need.

For some combination,

the number of candidates is tight.



– We construct the set of representatives as follows.

1. For each 𝑘, where 1 ≤ 𝑘 < 𝑚, 

the union of any 𝑘 sets contains more than 𝒌 elements.

– Pick an arbitrary 𝑥 ∈ 𝑆1 to be the representative for 𝑆1.

Remove 𝑥 from all the remaining 𝑚 − 1 sets.

– Then, the union of any 𝑘 remaining sets, where 1 ≤ 𝑘 ≤ 𝑚 − 1, 

still contains at least 𝒌 elements.

– By the induction hypothesis, there exist distinct representatives, 

other than 𝑥, for the remaining sets.

Together we have a set of distinct representatives for 𝑆1, 𝑆2, … , 𝑆𝑚.

We remove at most  

one element from  

each set.



2. For some 𝑘, where 1 ≤ 𝑘 < 𝑚, 

the union of some 𝑘 sets contains exactly 𝑘 elements.

– By the induction hypothesis, 

there exist 𝑘 distinct representatives for these sets.

Remove the 𝑘 elements from the remaining 𝑚 − 𝑘 sets.

– Then, the union of any 𝑠 remaining sets, where 1 ≤ 𝑠 ≤ 𝑚 − k, 

must contains at least 𝒔 elements.

■ If not, the union of these 𝑠 sets with the above 𝑘 sets contains 

less than 𝑠 + 𝑘 elements, a contradiction.

– By induction hypothesis, there exist distinct representatives 

for these remaining 𝑚 − 𝑘 sets.

We remove a 

minimum number of 

candidates .

So, there’s still an 

adequate number of 

candidates left.

The condition holds 

initially.



The König-Egeváry Min-Max Theorem

In bipartite graphs, the size of the maximum matching is equal to 

the size of the minimum vertex cover.



Vertex Cover of a Graph.

■ Let 𝐺 = (𝑉, 𝐸) be a graph.

■ A vertex cover of 𝐺 is a subset 𝑈 ⊆ 𝑉 of vertices such that, 

any edge 𝑒 ∈ 𝐸 has at least one endpoint in 𝑈.

– Intuitively, we use the vertices in 𝑈 to cover the edges in 𝐸.

■ We want to select as few vertices as possible to cover the edges in 

the graph.



Proof.

■ Let 𝐺 = (𝑈, 𝑉, 𝐸) be a bipartite graph.

– Let 𝑀 and 𝐶 be a maximum matching and a minimum vertex cover 

for 𝐺, respectively.

– It is clear that |𝐶| ≥ |𝑀|.

■ The endpoints of the edges in 𝑀 are distinct.

■ It takes at least one vertex to cover each edge in 𝑀.

Theorem 5.5 (König-Egeváry 1931). 

In a bipartite graph, the size of maximum matching is equal to 

the size of minimum vertex cover.

The matching 𝑀



Proof.

■ It suffices to prove that |𝑀| ≥ |𝐶|.

– Let 𝐴 ≔ 𝑈 ∩ 𝐶 and 𝐵 ≔ 𝑉 ∩ 𝐶.

– We will prove that, there exists a matching 𝑀𝐴

that matches all the vertices in 𝐴 to the vertices in 𝑉 ∖ 𝐵.

Theorem 5.5 (König-Egeváry 1931). 

In a bipartite graph, the size of maximum matching is equal to 

the size of minimum vertex cover.

𝑈

𝑉

𝐴 𝐵



Proof.

■ It suffices to prove that |𝑀| ≥ |𝐶|.

– Let 𝐴 ≔ 𝑈 ∩ 𝐶 and 𝐵 ≔ 𝑉 ∩ 𝐶.

– We will prove that, there exists a matching 𝑀𝐴

that matches all the vertices in 𝐴 to the vertices in 𝑉 ∖ 𝐵.

– If the above is true, then

by a similar argument, there exists a matching 𝑀𝐵 for 𝐵 to 𝑈 ∖ 𝐴.

– The endpoints of the edges in 𝑀𝐴 ∪𝑀𝐵 are distinct.

■ So, 𝑀𝐴 ∪𝑀𝐵 is a matching of size 𝐴 + 𝐵 = |𝐶|.

■ Hence, 𝑀 ≥ 𝐶 .

𝑈

𝑉

𝐴 𝐵



It suffices to prove that, there exists a matching 𝑀𝐴

that matches all the vertices in 𝐴 to the vertices in 𝑉 ∖ 𝐵.

■ Suppose that there exists no such matching. 

– Then, by Hall’s matching theorem,

there exists some 𝐷 ⊆ 𝐴, such that

𝑁 𝐷 ∩ 𝑉 ∖ 𝐵 < 𝐷 .

– Indeed, if 𝑁 𝐷 ∩ 𝑉 ∖ 𝐵 ≥ 𝐷 holds for all 𝐷 ⊆ 𝐴, 

then there exists a matching from 𝐴 to 𝑉 ∖ 𝐵.

– Since there is no such matching, there must be 

such a 𝐷 ⊆ 𝐴 with  𝑁 𝐷 ∩ 𝑉 ∖ 𝐵 < 𝐷 .

𝑈

𝑉

𝐴 𝐵

𝑉

𝐴

𝐵

𝐷

෩𝐷

𝑈



It suffices to prove that, there exists a matching 𝑀𝐴

that matches all the vertices in 𝐴 to the vertices in 𝑉 ∖ 𝐵.

■ If not, there exists some 𝐷 ⊆ 𝐴, such that

𝑁 𝐷 ∩ 𝑉 ∖ 𝐵 < 𝐷 .

– Let ෩𝐷 ≔ 𝑁 𝐷 ∩ 𝑉 ∖ 𝐵 ,  then ෩𝐷 < 𝐷 .

– Observe that, 𝐴 ∖ 𝐷 ∪ ෩𝐷 ∪ 𝐵 is a valid vertex cover for 𝐺.

■ There are four categories of edges in 𝐺.

– 𝐸𝐴,𝐵, 𝐸𝑈∖𝐴,𝐵 : covered by 𝐵. 

– 𝐸𝐴∖𝐷,𝑉∖𝐵 : covered by 𝐴 ∖ 𝐷.

– 𝐸𝐷,෩𝐷 : covered by ෩𝐷.

𝑉

𝐴

𝐵

𝐷

෩𝐷

෩𝐷 < |𝐷|

𝐷 is replaceable by ෩𝐷.

𝑈

Since  𝐶 = 𝐴 ∪ 𝐵 is a vertex cover, 

there is not edge between 𝑈 ∖ 𝐴 and 𝑉 ∖ 𝐵.



It suffices to prove that, there exists a matching 𝑀𝐴

that matches all the vertices in 𝐴 to the vertices in 𝑉 ∖ 𝐵.

■ If not, there exists some 𝐷 ⊆ 𝐴, such that

𝑁 𝐷 ∩ 𝑉 ∖ 𝐵 < 𝐷 .

– Let ෩𝐷 ≔ 𝑁 𝐷 ∩ 𝑉 ∖ 𝐵 ,  then ෩𝐷 < 𝐷 .

– Then, 𝐴 ∖ 𝐷 ∪ ෩𝐷 ∪ 𝐵 is a valid vertex cover

with size strictly smaller than 𝐶 = 𝐴 ∪ 𝐵, 

a contradiction.

𝑉

𝐴

𝐵

𝐷

෩𝐷

෩𝐷 < |𝐷|

𝐷 is replaceable by ෩𝐷.


