Problem $1(20 \%)$. How many integer solutions are there to $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=31$ with

1. $x_{i} \geq 0$.
2. $x_{i}>0$.
3. $x_{i}>i$ for all $i=1,2,3,4,5$.

Problem 2 (30\%). Prove the following identities using either the path-walking argument or the committee selection argument.

1. For any $n, r \in \mathbb{Z}^{\geq 0}$,

$$
\sum_{0 \leq k \leq r}\binom{n+k}{k}=\binom{n+r+1}{r}
$$

2. For any $m, n, r \in \mathbb{Z}^{\geq 0}$ with $0 \leq r \leq m+n$,

$$
\sum_{0 \leq k \leq r}\binom{m}{k}\binom{n}{r-k}=\binom{m+n}{r}
$$

Problem 3 (20\%). Use the principle of Inclusion-Exclusion to calculate the number of positive integers that are ≤ 70 and relatively prime to 70 .

Problem $4(30 \%)$. Let \mathcal{F} be a family of subsets of an n-element set X with the property that any two members of \mathcal{F} meet, i.e., $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{F}$. Suppose that for any proper subset A of X that is not in \mathcal{F}, A does not meet all of the members of \mathcal{F}, i.e., for any $A \subset X, A \notin \mathcal{F}$, there exists a set $B \in \mathcal{F}$ such that $A \cap B=\emptyset$. Prove that

$$
|\mathcal{F}|=2^{n-1}
$$

Hint: Consider the sets and their complements. Establish" \leq " and " \geq " separately.

