Problem 1 (20\%). Let X, Y be random variables. The variance of a random variable X is defined as $\operatorname{Var}[X]:=\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]$. Prove that

1. $\mathrm{E}[a X+b Y]=a \cdot \mathrm{E}[X]+b \cdot \mathrm{E}[Y]$ for any constant a, b.
2. If X and Y are independent, then $\mathrm{E}[X \cdot Y]=\mathrm{E}[X] \cdot \mathrm{E}[Y]$ and

$$
\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]
$$

3. $\operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]-\mathrm{E}[X]^{2}$. Hint: Use the fact that $\mathrm{E}[X \cdot \mathrm{E}[X]]=\mathrm{E}[X]^{2}$.

Problem 2 (20\%). Consider the slides of Week 2.
Prove that the graphs H_{i} defined in the proof of Theorem 3 are bicliques.

Problem 3 (20\%). Let $\mathrm{bc}(G)$ denote the smallest weight of a biclique covering of a graph G. Show that, if an n-vertex graph G has no independent set of size larger than α, then $\mathrm{bc}(G) \geq n \log _{2}(n / \alpha)$.
Hint: Prove as in the proof of the lower bound in Theorem 3. Show that $\mathrm{E}[X] \leq \alpha$.

Problem $4(20 \%)$. Let \mathcal{F} be a family of subsets, where

$$
|A| \geq 3 \text { for any } A \in \mathcal{F} \quad \text { and } \quad|A \cap B|=1 \text { for any } A, B \in \mathcal{F}, A \neq B .
$$

Suppose that \mathcal{F} is not 2-colorable. Let x, y be any elements that appear in \mathcal{F}, i.e., $x \in A \in \mathcal{F}$ and $y \in B \in \mathcal{F}$ for some $A, B \in \mathcal{F}$. Prove that:

- (i) x belongs to at least two members of \mathcal{F}.
- (ii) There exists some $C \in \mathcal{F}$ such that $\{x, y\} \subseteq C$.

Hint: Construct proper coloring to prove the properties. For (i), consider a particular A with $x \in A \in \mathcal{F}$. Color $A \backslash\{x\}$ red and the remaining blue. Show that this leads to the conclusion of (i). For (ii), consider particular A, B with $x \in A \in \mathcal{F}$ and $y \in B \in \mathcal{F}$. Color $(A \cup B) \backslash\{x, y\}$ red and the remaining blue. Prove that it leads to (ii).

Problem 5 (20\%). Let $G=(A \cup B, E)$ be a bipartite graph, d be the minimum degree of vertices in A and D the maximum degree of vertices in B. Assume that $|A| d \geq|B| D$.

Show that, for every subset $A_{0} \subseteq A$ with the density α defined as $\alpha:=\left|A_{0}\right| /|A|$, there exists a subset $B_{0} \subseteq B$ such that:

1. $\left|B_{0}\right| \geq \alpha \cdot|B| / 2$,
2. every vertex of B_{0} has at least $\alpha D / 2$ neighbors in A_{0}, and
3. at least half of the edges leaving A_{0} go to B_{0}.

Hint: Let B_{0} consist of all vertices in B that have at least $\alpha D / 2$ neighbors in A_{0}. First prove (3) and then (1).

