Problem 1 (20%). Let X, Y be random variables. The variance of a random variable X is defined as $\operatorname{Var}[X] := \operatorname{E}[(X - \operatorname{E}[X])^2]$. Prove that

- 1. $E[aX + bY] = a \cdot E[X] + b \cdot E[Y]$ for any constant a, b.
- 2. If X and Y are independent, then $E[X \cdot Y] = E[X] \cdot E[Y]$ and Var[X + Y] = Var[X] + Var[Y].
- 3. $\operatorname{Var}[X] = \operatorname{E}[X^2] \operatorname{E}[X]^2$. *Hint:* Use the fact that $\operatorname{E}[X \cdot \operatorname{E}[X]] = \operatorname{E}[X]^2$.

Problem 2 (20%). Consider the slides of Week 2.

Prove that the graphs H_i defined in the proof of Theorem 3 are bicliques.

Problem 3 (20%). Let bc(G) denote the smallest weight of a biclique covering of a graph G. Show that, if an *n*-vertex graph G has no independent set of size larger than α , then $bc(G) \ge n \log_2(n/\alpha)$.

Hint: Prove as in the proof of the lower bound in Theorem 3. Show that $E[X] \leq \alpha$.

Problem 4 (20%). Let \mathcal{F} be a family of subsets, where

 $|A| \ge 3$ for any $A \in \mathcal{F}$ and $|A \cap B| = 1$ for any $A, B \in \mathcal{F}, A \ne B$.

Suppose that \mathcal{F} is not 2-colorable. Let x, y be any elements that appear in \mathcal{F} , i.e., $x \in A \in \mathcal{F}$ and $y \in B \in \mathcal{F}$ for some $A, B \in \mathcal{F}$. Prove that:

- (i) x belongs to at least two members of \mathcal{F} .
- (ii) There exists some $C \in \mathcal{F}$ such that $\{x, y\} \subseteq C$.

Hint: Construct proper coloring to prove the properties. For (i), consider a particular A with $x \in A \in \mathcal{F}$. Color $A \setminus \{x\}$ red and the remaining blue. Show that this leads to the conclusion of (i). For (ii), consider particular A, B with $x \in A \in \mathcal{F}$ and $y \in B \in \mathcal{F}$. Color $(A \cup B) \setminus \{x, y\}$ red and the remaining blue. Prove that it leads to (ii).

Problem 5 (20%). Let $G = (A \cup B, E)$ be a bipartite graph, d be the minimum degree of vertices in A and D the maximum degree of vertices in B. Assume that $|A|d \ge |B|D$.

Show that, for every subset $A_0 \subseteq A$ with the density α defined as $\alpha := |A_0|/|A|$, there exists a subset $B_0 \subseteq B$ such that:

- 1. $|B_0| \ge \alpha \cdot |B|/2$,
- 2. every vertex of B_0 has at least $\alpha D/2$ neighbors in A_0 , and
- 3. at least half of the edges leaving A_0 go to B_0 .

Hint: Let B_0 consist of all vertices in B that have at least $\alpha D/2$ neighbors in A_0 . First prove (3) and then (1).