Problem 1 (30\%). There are k people in a lift at the ground floor. Each wants to get off at a random floor of one of the n upper floors. What is the expected number of lift stops? Justify your answer.
Hint: Consider the indicator variable X_{i} for the events that at least one person is off at the i-th floor, and apply the linearity of expectation. The answer is $n\left(1-(1-1 / n)^{k}\right)$.

Problem $2(30 \%)$. Let \mathcal{F} be a k-uniform k-regular family, i.e., each set has k points and each point belongs to k sets. Let $k \geq 10$. Show that there exists at least one valid 2 -coloring of the points.

Hint: Define proper events for the sets and apply the symmetric version of the local lemma.

Problem 3 (20\%). Prove that the statement of the asymmetric version of the local lemma implies the conclusion of the symmetric version. That is, assuming that $\operatorname{Pr}\left[A_{i}\right] \leq p$ for all i and $e p(d+1) \leq 1$, use the asymmetric version of the local lemma to prove that $\operatorname{Pr}\left[\bigcap_{i} \overline{A_{i}}\right]>0$.
Hint: Let $x\left(A_{i}\right)=\frac{1}{d+1}$ for all $1 \leq i \leq n$. Use the inequality $\frac{1}{e} \leq\left(1-\frac{1}{d+1}\right)^{d}$ obtained by the limit formula of $1 / e$ and the fact that it converges from the above.

Problem $4(20 \%)$. Given a graph $G=(V, E)$ and a $0-1$ vector $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in\{0,1\}^{n}$, where $n=|V|$, define the And-Or formula

$$
F_{G}=\bigwedge_{\{i, j\} \notin E}\left(\overline{v_{i}} \vee \overline{v_{j}}\right) .
$$

Consider the vertex set $S_{v}:=\left\{i: v_{i}=1\right\}$. Show that S_{v} is a clique of G if and only if v satisfies the formula F_{G}.

