Problem 1 (30%). Prove that every set of n + 1 distinct integers chosen from $\{1, 2, ..., 2n\}$ contains a pair of consecutive numbers and a pair whose sum is 2n + 1.

For each n, exhibit two sets of size n to show that the above results are the best possible, i.e., sets of size n + 1 are necessary.

Hint: Use pigeonholes (2i, 2i - 1) and (i, 2n - i + 1) for $1 \le i \le n$.

Problem 2 (30%). Let G = (V, E) be a graph. Denote by $\chi(G)$ the minimum number of colors needed to color the vertices in V such that, no adjacent vertices are colored the same. Prove that, $\chi(G) \leq \Delta(G) + 1$, where $\Delta(G)$ is the maximum degree of the vertices.

Hint: Order the vertices v_1, v_2, \ldots, v_n and use greedy coloring. Show that it is possible to color the graph using $\Delta(G) + 1$ colors.

Problem 3 (20%). Use nonnegative edge weights and construct a 4-vertex edged-weighted graph in which the maximum-weight matching is not a maximum-cardinality matching.

Note: The cardinality is referred to the size of a set.

Problem 4 (20%). Let \mathcal{F} be a family of sets, where $|F| \geq 2$ for all $F \in \mathcal{F}$. Let A, B be two sets with |A| = |B|, and both A and B intersect all the members of \mathcal{F} . Furthermore, no sets with smaller size than A can intersect all the members of \mathcal{F} , i.e., for all set C with |C| < |A|, C does not intersect all the members of \mathcal{F} .

Consider a bipartite set G with partite sets A and B, where there is an edge between $a \in A$ and $b \in B$ if there exists some $F \in \mathcal{F}$ such that $a \in F$ and $b \in F$. Prove that G has a perfect matching.

Hint: For any $I \subseteq A$, let $S(I) \subseteq B$ be the neighbors of I in G. Show that the set $A' := (A \setminus I) \cup S(I)$ intersect all the members of \mathcal{F} .