Problem 1 (30\%). Prove that every set of $n+1$ distinct integers chosen from $\{1,2, \ldots, 2 n\}$ contains a pair of consecutive numbers and a pair whose sum is $2 n+1$.
For each n, exhibit two sets of size n to show that the above results are the best possible, i.e., sets of size $n+1$ are necessary.

Hint: Use pigeonholes $(2 i, 2 i-1)$ and $(i, 2 n-i+1)$ for $1 \leq i \leq n$.

Problem $2(30 \%)$. Let $G=(V, E)$ be a graph. Denote by $\chi(G)$ the minimum number of colors needed to color the vertices in V such that, no adjacent vertices are colored the same. Prove that, $\chi(G) \leq \Delta(G)+1$, where $\Delta(G)$ is the maximum degree of the vertices.

Hint: Order the vertices $v_{1}, v_{2}, \ldots, v_{n}$ and use greedy coloring. Show that it is possible to color the graph using $\Delta(G)+1$ colors.

Problem 3 (20\%). Use nonnegative edge weights and construct a 4 -vertex edged-weighted graph in which the maximum-weight matching is not a maximum-cardinality matching.
Note: The cardinality is referred to the size of a set.

Problem $4(20 \%)$. Let \mathcal{F} be a family of sets, where $|F| \geq 2$ for all $F \in \mathcal{F}$. Let A, B be two sets with $|A|=|B|$, and both A and B intersect all the members of \mathcal{F}. Furthermore, no sets with smaller size than A can intersect all the members of \mathcal{F}, i.e., for all set C with $|C|<|A|, C$ does not intersect all the members of \mathcal{F}.
Consider a bipartite set G with partite sets A and B, where there is an edge between $a \in A$ and $b \in B$ if there exists some $F \in \mathcal{F}$ such that $a \in F$ and $b \in F$. Prove that G has a perfect matching.
Hint: For any $I \subseteq A$, let $S(I) \subseteq B$ be the neighbors of I in G. Show that the set $A^{\prime}:=$ $(A \backslash I) \cup S(I)$ intersect all the members of \mathcal{F}.

