## 1 The Maximum Matching Problem

**Definition 1** (The Maximum Matching Problem). Given a graph G = (V, E), compute a matching  $M \subseteq E$  that has the maximum cardinality.

A generic algorithm for this problem goes as follows.

1.  $M \longleftarrow \emptyset$ .

- 2. Repeatedly compute an M-augmenting path P in G until there exists none.
  - Update M by setting  $M \leftarrow M \triangle P$ .
- 3. Output M.

The correctness of the algorithm is based on the Berge's theorem. Note that,  $M \triangle P := (M \setminus P) \cup (P \setminus M)$  is the symmetric difference between M and P.

## 1.1 The Augmenting Path Problem in Bipartite Graphs

**Definition 2** (The Augmenting Path Problem). Given a graph G = (V, E) and a matching  $M \subseteq E$ , determine if there exists an *M*-augmenting path and compute one if it exists.

The Augmenting Path Problem in bipartite graphs can be answered in O(n+m) time.

For any  $v \in V$ , let  $\ell(v)$  denote the vertex to which v is matched by M.  $\ell(v)$  is defined to be -1 if v is unmatched.

- 1. Mark all the vertices as *unvisited*.
- 2. For each unmatched vertex  $u \in V$ , do
  - If Aug-Path(*u*) returns true, then report "Yes".
- 3. Report "No".

The recursive procedure  $\operatorname{Aug-Path}(u)$  goes as follows.

- 1. Mark u as visited
- 2. For each neighbor v of u, do
  - If v is unmatched, or, if  $\ell(v)$  is unvisited and Aug-Path( $\ell(v)$ ) returns true, then
    - Match u with v. // set  $\ell(u) = v$ ,  $\ell(v) = u$ .
    - Return true.
- 3. Return false.

Note that, when the Augmenting Path algorithm reports "Yes," the corresponding M-augmenting path is given by the recursive call Aug-Path(u) that results in "Yes."

Define the following notations.

- Let A, B be the two partite sets of G.
- Let U be the set of unmatched vertices in A.
- Let S the set of vertices in A that are marked as visited.
- Let T be the set of vertices that are matched to  $S \setminus U$  by M.



Then, when the Augmenting Path algorithm reports "No," the set  $C := (A \setminus S) \cup T$  is a vertex cover for G with size M.

## 1.2 The Maximum Matching Problem in Bipartite Graphs

The Maximum Matching Problem in bipartite graphs can be solved in  $O(\sqrt{n} \cdot m)$  time. The following is an O(nm) time algorithm.

- Set  $\ell(v) = -1$  for all  $v \in V$ .
- Repeatedly apply the Augmenting Path algorithm to enlarge the matched pairs until it reports "No."
- Output the matched pairs.