1 The Maximum Matching Problem

Definition 1 (The Maximum Matching Problem). Given a graph $G=(V, E)$, compute a matching $M \subseteq E$ that has the maximum cardinality.

A generic algorithm for this problem goes as follows.

1. $M \longleftarrow \emptyset$.
2. Repeatedly compute an M-augmenting path P in G until there exists none.

- Update M by setting $M \longleftarrow M \triangle P$.

3. Output M.

The correctness of the algorithm is based on the Berge's theorem. Note that, $M \triangle P:=(M \backslash P) \cup$ ($P \backslash M$) is the symmetric difference between M and P.

1.1 The Augmenting Path Problem in Bipartite Graphs

Definition 2 (The Augmenting Path Problem). Given a graph $G=(V, E)$ and a matching $M \subseteq E$, determine if there exists an M-augmenting path and compute one if it exists.

The Augmenting Path Problem in bipartite graphs can be answered in $O(n+m)$ time.
For any $v \in V$, let $\ell(v)$ denote the vertex to which v is matched by $M . \ell(v)$ is defined to be -1 if v is unmatched.

1. Mark all the vertices as unvisited.
2. For each unmatched vertex $u \in V$, do

- If $\operatorname{Aug}-\operatorname{Path}(u)$ returns true, then report "Yes".

3. Report "No".

The recursive procedure $\operatorname{Aug}-\operatorname{Path}(u)$ goes as follows.

1. Mark u as visited
2. For each neighbor v of u, do

- If v is unmatched, or, if $\ell(v)$ is unvisited and $\operatorname{Aug}-\operatorname{Path}(\ell(v))$ returns true, then
- Match u with $v . / / \operatorname{set} \ell(u)=v, \ell(v)=u$.
- Return true.

3. Return false.

Note that, when the Augmenting Path algorithm reports "Yes," the corresponding M-augmenting path is given by the recursive call $\operatorname{Aug}-\operatorname{Path}(u)$ that results in "Yes."

Define the following notations.

- Let A, B be the two partite sets of G.
- Let U be the set of unmatched vertices in A.
- Let S the set of vertices in A that are marked as visited.
- Let T be the set of vertices that are matched to $S \backslash U$ by M.

Then, when the Augmenting Path algorithm reports "No," the set $C:=(A \backslash S) \cup T$ is a vertex cover for G with size M.

1.2 The Maximum Matching Problem in Bipartite Graphs

The Maximum Matching Problem in bipartite graphs can be solved in $O(\sqrt{n} \cdot m)$ time. The following is an $O(n m)$ time algorithm.

- Set $\ell(v)=-1$ for all $v \in V$.
- Repeatedly apply the Augmenting Path algorithm to enlarge the matched pairs until it reports "No."
- Output the matched pairs.

