
MAXIMUM MATCHINGS

A matching is a set of edges, so its size is the number of edges. We canseek a large matching by iteratively selecting edges whose endpoint� are notused by the edges already selected, until no more are available. This yields amaximal matching but maybe not a maximum matching.
3.1.4. Definition. A maximal matching in a graph is a matching that cannotbe enlarged by adding an edge. A maximum matching is a matching ofmaximum size among all matchings in the graph.

A matching M is maximal if every edge not in M is incident to an edge al­ready in M. Every maximum matching is a maximal matching, but the converseneed not hold.
3.1.5. Example. Maximal -=j:. maximum. The smallest graph having a maximalmatching that is not a maximum matching is P4. If we take the middle edge,then we can add no other, but the two end edges form a larger matching. Belowwe show this phenomenon in P4 and in P6. ■

In Example 3. 1.5, replacing the bold edges by the solid edges yields a larger
matching. This gives us a way to look for larger matchings.

3.1.6. Definition. Given a matching M, an M-alternating path is a path that
alternates between edges in M and edges not in M. An M -alternating path
whose enpoints are unsaturated by M is an M-augmenting path.

Given an M-augmenting path P, we can replace the edges of M in P with
the other edges of P to obtain a new matching M' with one more edge. Thus
when Mis a maximum matching, there is no M-augmenting path.

In fact, we prove next that maximum matchings are characterized by the
absence of augmenting paths. We prove this by considering two matchings
and examining the set of edges belonging to exactly one of them. We define
this operation for any two graphs with the same vertex set. (The operation is
defined in general for any two sets; see Appendix A.)

3.1.7. Definition. If G and H are graphs with vertex set V, then the sym­
metric difference Gt:.H is the graph with vertex set V whose edges are
all those edges appearing in exactly one of G and H. We also use this no­
tation for sets of edges; in particular, if M and M' are matchings, then
Mt:.M' = (M - M') U (M' - M).

3.1.8. Example. In the graph below, M is the matching with five solid edges,
M' is the one with six bold edges, and the dashed edges belong to neither M nor
M'. The two matchings have one common edge e; it is not in their symmetric
difference. The edges of M 1:.M' form a cycle of length 6 and a path of length 3. ■

•

I e

I

•

-�

3.1.9. Lemma. Every component of the symmetric difference of two matchings
is a path or an even cycle.

Proof: Let M and M' be matchings, and let F = M 1:.M'. Since M and M' are
matchings, every vertex has at most one incident edge from each of them. Thus
F has at most two edges at each vertex. Since /l(F) :::; 2, every component of F

is a path or a cycle. Furthermore, every path .or cycle in F alternates between
edges of M - M' and edges of M' - M. Thus each cycle has even length, with
an equal number of edges from M and from M'. ■

3.1.10. Theorem. (Berge [1957]) A matching M in a graph G is a maximum
matching in G if and only if G has no M-augmenting path.

110 Chapter 3: Matchings and Factors

Proof: We prove the contrapositive of each direction; G has a matching larger

than M if and only if G has an M-augmenting path. We have observed that an
M-augmenting path can be used to produce a matching larger than M.

For the converse, let M' be a matching in G larger than M; we construct an
M-augmenting path. Let F = MaM'. By Lemma 3.1.9, F consists of paths and
even cycles; the cycles have the same number of edges from M and M'. Since

\M'\ > \M\, F must have a component with more edges of M' than of M. Such
a component can only be a path that starts and ends with an edge of M'; thus

it is an M-augmenting path in G.

HALL’S MATCHING CONDITION

When we are filling jobs with applicants, there may be many more ap-

plicants than jobs; successfully filling the jobs will not use all applicants. To
model this problem, we consider an X, Y-bigraph (bipartite graph with biparti-

tion X, Y—Definition 1.2.17), and we seek a matching that saturates X.

If a matching M saturates X, then for every S c X there must be at least

|
S

|
vertices that have neighbors in S, because the vertices matched to S must be

chosen from that set. We use NC (S) or simply N(S) to denote the set ofvertices

having a neighbor in S. Thus |N(S)| > |S| is a necessary condition.

The condition “For all S c X, |N(S)| > |S|” is Hall’s Condition. Hall

proved that this obvious necessary condition is also sufficient (TONCAS).

3.1.11. Theorem. (Hall’s Theorem—P. Hall [1935]) An X, Y-bigraph G has a

matching that saturates X if and only if |(V(S)| > |S| for all 5 c X.

Proof: Necessity. The |S| vertices matched to S must lie in N(S).

Sufficiency. To prove that Hall’s Condition is sufficient, we prove the con-

trapositive. IfM is a maximum matching in G and M does not saturate X, then

we obtain a set S c X such that |A(S)| < |S|. Let u € X be a vertex unsatu-

rated by M. Among all the vertices reachable from u by M-altemating paths in

G, let S consist of those in X, and let T consist of those in Y (see figure below
with M in bold). Note that u e S.

S

We claim that M matches T with S — {m}. The M-alternating paths from u

reach Y along edges not in M and return to X along edges in M. Hence every

vertex of S - {«} is reached by an edge in M from a vertex in T. Since there is

no M-augmenting path, every vertex of T is saturated; thus an M-alternating

3.2. Algorithms and Applications

MAXIMUM BIPARTITE MATCHING

To find a maximum matching, we iteratively seek augmenting paths to en­
large the current matching. In a bipartite graph, if we don't find an augmenting
path, we will find a vertex cover with the same size as the current matching,
thereby proving that the current matching has maximum size. This yields both
an algorithm to solve the maximum matching problem and ah algorithmic proof
of the Konig-Egervary Theorem.

Given a matching M in an X, Y-bigraph G, we search for M-augmenting
paths from each M-unsaturated vertex in X. We need only search from vertices
in X, because every augmenting path has odd length and thus has ends in both
X and Y. We will search from the unsaturated vertices in X simultaneously.
Starting with a matching of size 0, a' (G) applications- of the Augmenting Path
Algorithm produce a maximum matching.

3.2.1. Algorithm. (Augmenting Path Algorithm).
Input: An X, Y -bigraph G, a matching M in G, and the set U of M-unsaturated
vertices in X.

Idea: Explore M-alternating paths from U, letting S s;;; X and T s;;; Y be the
sets of vertices reached. Mark vertices of S that have been explored for path
extensions. As a vertex is reached, record the vertex from which it is reached.
Initialization: S = U and T = 0.
Iteration: If S has no unmarked vertex, stop and report TU (X - S) as a min­
imum cover and M as a maximum matching. Otherwise, select an unmarked
x E S. To explore x, consider each y E N(x) such that xy ¢ M. If y is unsatu­
rated, terminate and report an M-augmenting path from U to y. Otherwise, y
is matched to some w E X by M. In this case, include yin T (reached from x)

124 Chapter 3: Matchings and Factors

and include w in S (reached from y). After exploring all such edges incident to

x, mark x and iterate.

U S

When exploring x in the iterative step, we may reach a vertex y e T that

we have reached previously. Recording x as the previous vertex on the path

may change which M-augmenting path we report, but it won’t change whether
such a path exists.

3.2.2. Theorem. Repeatedly applying the Augmenting Path Algorithm to a

bipartite graph produces a matching and a vertex cover of equal size.

Proof: We need only verify that the Augmenting Path Algorithm produces an
M-augmenting path or a vertex cover of size |M|. If the algorithm produces an
M-augmenting path, we are finished. Otherwise, it terminates by marking all

vertices of S and claiming that R = T U (X — S) is a vertex cover of size |M|. We
must prove that R is a vertex cover and has size |M|.

To show that R is a vertex cover, it suffices to show that there is no edge

joining S to Y - T. An M-alternating path from U enters X only on an edge of

M. Hence every vertex x of S - U is matched via M to a vertex of T, and there

is no edge ofM from S to Y — T. Also there is no such edge outside M. When
the path reaches x e S, it can continue along any edge not in M, and exploring

x puts all other neighbors ofx into T. Since the algorithm marks all of 5 before

terminating, all edges from S go to T.

Now we study the size of R. The algorithm puts only saturated vertices in

T
; each y € T is matched via M to a vertex of S. Since U c S, also each vertex

of X — S is saturated, and the edges of M incident to X — S cannot involve T.

Hence they are different from the edges saturating T, and we find that M has
at least ITI + |X — S| edges. Since there is no matching larger than this vertex

cover, we have |M| = |T| + |X - S|. = |R|.

In addition to studying the correctness of algorithms, we are concerned

about the time (number ofcomputational steps) they use. We measure this as a

function of the size of the input. For graph problems, we usually use the order

n(G) and/or size e(G) to measure the input size.

3.2.3. Definition. The running time ofan algorithm is the maximum number
ofcomputational steps used, expressed as a function ofthe size ofthe input.

A good algorithm is one that has polynomial running time.

Running time is often expressed as “0(f)”, where / is a function ofthe

Section 3.2: Algorithms and Applications 125

size ofthe input. Here O(f) denotes the set of functions g such that |g(.r)|

is bounded by a constant multiple of
|
f(x) |

when x is sufficiently large (that

is, there exist c, a such that |g(x)| < c \f(x)\ when |jc| > a).

Many problems we study in Chapters 1-4 have good algorithms; other no-

tions of complexity (Appendix B) need not trouble us yet. Since we don’t know
how long a particular operation may take on a particular computer, constant

factors in running time have little meaning. Hence the “Big Oh” notation 0(f)
is convenient. When / is a quadratic polynomial, we typically abuse nota-

tion by writing 0(n 2
) instead of O(f) to describe functions that grow at most

quadratically in terms of n.

3.2.4. Remark. Let G be an X, F-bigraph with n vertices and m edges. Since

a'(G) < n/2, we find a maximum matching in G by applying Algorithm 3.2.1

at most n/2 times. Each application explores a vertex of X at most once, just

before marking it; thus it considers each edge at most once. If the time for

one edge exploration is bounded by a constant, then this algorithm to find a

maximum matching runs in time O(nm). Theorem 3.2.22 presents a faster

algorithm, with running time O(Jnm). Section 3.3 discusses a good algorithm

for maximum matching in general graphs.

WEIGHTED BIPARTITE MATCHING

Our results on maximum matching generalize to weighted X, Y-bigraphs,

where we seek a matching ofmaximum total weight. If our graph is not all of

Kn n ,
then we insert the missing edges and assign them weight 0. This does not

affect the numbers we can obtain as the weight ofa matching. Thus we assume
that our graph is Kn n .

Since we consider only nonnegative edge weights, some maximum weighted

matching is a perfect matching; thus we seek a perfect matching. We solve both

the maximum weighted matching problem and its dual.

3.2.5. Example. Weighted bipartite matchingand its dual. A farming company
owns n farms and n processing plants. Each farm can produce corn to the

capacity of one plant. The profit that results from sending the output offarm i

to plant j is wtj. Placing weight on edge x,-y,- gives us a weighted bipartite

graph with partite sets X = {xi, .

.

. , *„} and Y = {yi, . . . , y„}. The company
wants to select edges forming a matching to maximize total profit.

The government claims that too much corn is being produced, so it will pay
the company not to process corn. The government will pay w, if the company
agrees not to use farm j and i>

;
ifit agrees not to use plant j. Ifu.+Vj < KJi; ,

then

the company makes more by using the edge ;c, y;
than by taking the government

payments for those vertices. In order to stop all production, the government
must offer amounts such that k, + vj > wtj for all i, j. The government wants
to find such values to minimize Y1 u i + Y1 vj- •

126 Chapter 3: Matchings and Factors

3.2.6. Definition. A transversal of an n-by-n matrix consists of n positions,

one in each row and each column. Finding a transversal with maximum
sum is the Assignment Problem. This is the matrix formulation of the

maximum weighted matching problem, where nonnegative weight ui,j

is assigned to edge x, yj of Kn n and we seek a perfect matching M to maxi-

mize the total weight w{M).

With these weights, a (weighted) cover is a choice oflabels u u„

and Vj, , vn such that m, + vj > Wjj for all i, j. The cost c{u, i>) of a cover

(,u , v) is Yl u
‘ + H v

i-
The minimum weighted cover problem is that of

finding a cover ofminimum cost.

Note that the problem ofminimum weight perfect matching can be solved

using maximum weight matching; simply replace each weight Wij with M — Wjj

for some large number M.
The next lemma shows that the weighted matching and weighted cover

problems are dual problems.

3.2.7. Lemma. For a perfect matching M and cover (u, v) in a weighted bipar-

tite graph G, c(u, v) > u>(M). Also, c(u, v) = w(M) ifand only ifM consists

ofedges x, y, such that m, + v, — wUJ . In this case, M and (u , v) are optimal.

Proof: Since M saturates each vertex, summing the constraints m, + Vj > w
tj

that arise from its edges yields c(u, v) > w(M) for every cover (u, v). Further-

more, if c(u, v) = w(M), then equality must hold in each of the n inequalities

summed. Finally, since c(u, v) > w(M) for every matching and every cover,

c(u, v) = w{M) implies that there is no matching with weight greater than

c(u, v

)

and no cover with cost less than w(M).

A matching and a cover have the same value only when the edges of the

matching are covered with equality. This leads us to an algorithm.

3.2.8. Definition. The equality subgraph Gu v for a cover (u, v) is the span-

ning subgraph of Kn n having the edges x, y, such that m, + Vj = wtj.

IfGuv has a perfect matching, then its weight is Yl ui+Yl vj’ and by Lemma
3.2.7 we have the optimal solution. Otherwise, we find a matchingM and a ver-

tex cover Q of the same size in G u v (by using the Augmenting Path Algorithm,

for example). Let R = Q n X and T = QHY. Our matching of size
\ Q\ consists

of
| /?

|
edges from R to Y — T and \T\ edges from T to X - R, as shown below. To

seek a larger matching in the equality subgraph, we change (u , v) to introduce

an edge from X — R to Y — T while maintaining equality on all edges of M.
A cover requires m, + Vj > Wjj for all i, j ; the difference m, + Vj — w i }

is

the excess for i, j. Edges joining X — R and Y — T are not in Gu v and hate
positive excess. Let e be the minimum excess on the edges from X — R to Y — T.

Reducing m, by e for all x, € X - R maintains the cover condition for these edges

while bringing at least one into the equality subgraph. To maintain the cover

condition for the edges from X — R to T, we also increase Vj by e for yj e T.

Section 3.2: Algorithms and Applications 127

We repeat the procedure with the new equality subgraph; eventually we
obtain a cover whose equality subgraph has a perfect matching. The resulting

algorithm was named the Hungarian Algorithm by Kuhn in honor of the

work of Konig and Egervary on which it is based.

U
€
S R

T
+€

3.2.9. Algorithm. (Hungarian Algorithm—Kuhn [1955], Munkres [1957]).

Input: A matrix of weights on the edges of K„ n with bipartition X, Y.

Idea: Iteratively adjusting the cover (w, v) until the equality subgraph Guv has
a perfect matching.

Initialization: Let (u, v) be a cover, such as u,
— max

;
w,j and u

;
= 0.

Iteration: Find a maximum matching M in G„.„. IfM is a perfect matching,

stop and report M as a maximum weight matching. Otherwise, let Q be a

vertex cover of size \M\ in G„,„. Let R — X C\ Q and T = Y n Q. Let

e = min[w, + Vj — w,j: x, e X - R, yj e Y - T).

Decrease m, by e for jc, e X — R, and increase Vj by e for y, e T

.

Form the new
equality subgraph and repeat.

We have presented the algorithm using bipartite graphs, but repeatedly

drawing a changing equality subgraph is awkward. Therefore, we compute
with matrices. The initial weights form a matrix A with u)jj in position i, j. We
associate the vertices and the labels (

u

, v) with the rows and columns, which
serve as X and Y, respectively. We subtract wLj from w, + vj to obtain the excess
matrix: c,j — u

t + t>j
— w:j. The edges of the equality subgraph correspond to

Os in the excess matrix.

3.2.10. Example. Solving the Assignment Problem. The first matrix below is

the matrix of weights. The others display a cover (it, u) and the corresponding

excess matrix. We underscore entries in the excess matrix to mark a maximum
matching M of G„.„, which appears as boid edges in the equality subgraphs

drawn for the first two excess matrices. (Drawing the equality subgraphs is not

necessary.) A matching in Gu , v corresponds to a set of Os in the excess matrix

with no two in any row or column; call this a partial transversal.

A set of rows and columns covering the Os in the excess matrix is a cover-

ing set; this corresponds to a vertex cover in G u v . A covering set of size less

than n yields progress toward a solution, since the next weighted cover costs

less. We study the Os in the excess matrix and find a partial transversal and a

covering set of the same size. In a small matrix, we can do this by inspection.

128 Chapter 3: Matchings and Factors

We underscore the Os of a partial transversal, and we use Rs and Ts to

label the rows and columns of the covering set. At each iteration, we compute
the minimum excess on the positions not in a covered row or column (in rows

X - R and columns Y — T). These uncovered positions have positive excess (the

corresponding edges are not in the equality subgraph). The value e defined in

Algorithm 3.2.9 is the minimum of these excesses. We reduce the label m, by e

on rows not in R and increase the label Vj by e on columns in T.

In the example below, the covering set used in the first iteration reduces the

cost of the cover but does not augment the maximum matching in the equal-

ity subgraph. The second iteration produces a perfect matching. Using the

last three columns as a covering set in the first iteration would augment the

matching immediately.

The transversal of Os after the final iteration identifies a perfect matching

whose total weight equals the cost of the final cover. The corresponding edges

have weights 5, 4, 6, 8, 8 in the original data, which sum to 31. The labels

4, 5, 7, 4, 6 and 0, 0, 2, 2, 1 in the final cover satisfy each edge exactly and also

sum to 31. The value ofthe optimal solution is unique, but the solution itself is

not; this example has many maximum weight matchings and many minimum
cost covers, but all have total weight 31.

0 0 0 0 0

/4 1 6 2 3\
6

6
(
2 5 0 4 3

\
5 0 3 7 7 2 7 4 0 1

2 3 4 5 8 -* 8 6 5 4 3 0

3 4 6 3 4 6 3 2 0 3 2

\4 6 5 8 6/
1

8 u 2 3 0 2/
T T

X

Y

R

T T

0 0 1 1 0 0 0 2 2 1

5 /I 4 0 4 2
\ X* 4 (° 3 0 4 2

\
6 1 6 4 0 0

x \W / 5 0 5 4 0 0

8 6 5 5 4 0
N

5 4 5 4 0

5 2 1 0 3 1 VV^ 4 1 0 0 3 1

7 \s 1 3 0 1/
y •

T T T O \2 0 3 0 1/
T T T

3.2.11. Theorem. The Hungarian Algorithm finds a maximum weight match-

ing and a minimum cost cover.

Proof: The algorithm begins with a cover. It can terminate only when the

equality subgraph has a perfect matching, which guarantees equal value for

the current matching and cover. Suppose that («, v) is the current cover and
that the equality subgraph has no perfect matching. Let -(«', v') denote the

new lists of numbers assigned to the vertices. Because e is the minimum of a
nonempty finite set of positive numbers, e > 0.

Section 3.2: Algorithms and Applications 129

We verify first that {u'
, v') is a cover. The change of labels on vertices of

X — R and T yields m- + v'- = k, + vj for edges Xjyj from X — R to T or from R to

Y — T. If jc; e R and yj e T, then u[+ t/j = m, + Vj + e, and the weight remains

covered. If x
t e X - R and y;

e Y — T, then u\ + v'j equals u, + Vj — e, which by
the choice of e is at least w,j.

The algorithm terminates only when the equality subgraph has a perfect

matching, so it suffices to show that it does terminate. Suppose that the weights

Wij are rational. Multiplying the weights by their least common denominator

yields an equivalent problem with integer weights. We can now assume that

the labels in the current cover also are integers. Thus each excess is also an
integer, and at each iteration we reduce the cost of the cover by an integer

amount. Since the cost starts at some value and is bounded below by the weight

of a perfect matching, after finitely many iterations we have equality.

For real-valued weights in general, see Remark 3.2.12).
3.2.12.

* Remark. When the weights are real numbers, the algorithm still

works if we obtain vertex covers in the equality subgraph more carefully. We
show that the algorithm terminates within n2 iterations. Because the edges

of M remain in the new equality subgraph, the size of the current matching

never decreases. Since the size ofthe matching can increase at most n times, it

suffices to show that it must increase within n iterations.

If we find the maximum matching M by iterating the Augmenting Path

Algorithm, then the last iteration presents us with a vertex cover. We find it by
exploring M-alternating paths from the set U of M-unsaturated vertices in X.

With S and T denoting the sets ofvertices reachable in X and T, we obtain the

vertex cover RUT, where R = X — S.

Applying a step of the Hungarian Algorithm using the vertex cover RUT
maintains equality on M and all the edges in M-alternating paths from U.

Edges from T to R disappear from the equality subgraph, but we don’t care

because they don’t appear in M-altemating paths from U. Introducing an edge

from S to Y - T either creates an M-augmenting path or increases T while

leaving U unchanged. Since we can increase T at most n times, we obtain a

larger matching in the equality subgraph within n iterations.

3.2.13.

* Remark. The maximum matching and vertex cover problems in bi-

partite graphs are special cases of the weighted problems. Given a bipartite

graph G, form a weighted graph with weight 1 on the edges of G and weight 0

on the edges ofKn n . The maximum weight of a matching is a'(G).

Given integer weights, the Hungarian algorithm always maintains integer

labels in the weighted cover. Hence in this weighted cover problem we may
restrict the values (labels) used to be integers. Further thought shows that

these integers will always be 0 or 1.

The vertices receiving label 1 must cover the weight on the edges of G, so

they form a vertex cover for G. Minimizing the sum of labels under the integer

restriction is equivalent to finding the minimum number ofvertices in a vertex

cover for G. Hence the answer to the weighted cover problem is /8(G).

130 Chapter 3: Matchings and Factors

3.2.14. * Application. Street Sweeping and the Transportation Problem. A

cleaning machine S\' eeping a curb must move in the same direction as traffic.
This yields a digraph; a two-way street generates two oppositely directed edges,
while a one-way street generates two edges in the same direction. We consider
a simple version of the Street Sweeping Problem, discussed in more detail
in Roberts [19'78] as based on Tucker-Bodin [1976].

In New York City, parking is prohibited from some curbs each day to allow
for strf!et sweeping. For each day, this defines a sweep subgraph G of the full
digraph H of curbs, consisting of thC\se available for sweeping. Each e E E (H)

has a deadheading time t(e) needed to travel it without sweeping.
The question is how to swi:>ep G while minimizing the total deadheading

time spent without sweeping. This io ::. generalization of a directed version of
the Chinese Postman Problem. If in degree equals outdegree at each vertex of
G, then no deadheading is needed. Otherwise, we duplicate edges of G or add
edges from H to obtain an Eulerian digraph G' containing G.

Let X be the set of vertices with excess indegree; let a(x) = da(x) - d°t,(x)
fer x EX. Let Y be the set witl:- excess outdegree; let a(y) = da(Y) - d°t,(y) for
y E }'. Note that L

xex
a(x) = L

>EY
a(y). To obtain G' from G, we must add

a(x)_ edges with tails at x E X and a(y1 edges with heads at y E Y. Since G'
needs net outdegree O at each vertex, the additions form paths from X to Y. The
cost c(xy) of an x, y-path i!': th.: distance from x toy in the weighted digraph H,
which can be found by Dijkstra's Algorithm.

This yields the Transportation Problem. Given supply a (x) for x E X,
demand a(y) for y E Y, cost c(xy) per unit sent from x to y, and I:a(x) =

L a(y), we want to satisfy the demands at least total cost. A version of the
problem was introduced by Kantorovich [1939]; the form above arose (with a
constructive solution) in Hitchcock [1941] (see also Koopmans [1947]). The
problem is discussed at length in Ford-Fulkerson [1962, p93-130].

When the supplies and demands are rational, the Assignment Problem
can be applied. First scale up to obtain integer supplies and demands. Next

define a matrix with L a(x) rows and columns. For each x E X, create a(x)
rows. For each y E Y, create 8(y) columns. When row i and-column j represent
x and y, let U'i .J = M - c(xy), where M = maxx.y c(xy). A ma;ximum weight
matching now yields a minimum cost solution to the Transportation Problem.
A generalization of the Transportation Problem appears in Section 4..3. ■

