MAXIMUM MATCHINGS

A matching is a set of edges, so its size is the number of e(fges.l We can
seek a large matching by iteratively selecting edges whose endpoints are not
used by the edges already selected, until no more are available. This yields a
maximal matching but maybe not a maximum matching.

3.1.4. Definition. A maximal matching in a graph is a matching that cannot
be enlarged by adding an edge. A maximum matching is a matching of
maximum size among all matchings in the graph.

A matching M is maximal if every edge not in M is incident to an edge al-
ready in M. Every maximum matchingis a maximal matching, but the converse
need not hold.

3.1.5. Example. Maximal # maximum. The smallest graph having a maximal
matching that is not a maximum matching is P4. If we take the middle edge,
then we can add no other, but the two end edges form a larger matching. Below
we show this phenomenon in P4 and in Pg. |

N TN

In Example 3.1.5, replacing the bold edges by the solid edgesyields a larger
matching. This gives us a way to look for larger matchings.

3.1.6. Definition. Given a matching M, an M-alternating path is a path that
alternates between edges in M and edges notin M. An M -alternating path
whose enpoints are unsaturated by M is an M-augmenting path.

Given an M-augmenting path P, we can replace the edges of M in P with
the other edges of P to obtain a new matching M’ with one more edge. Thus
when M is a maximum matching, there is no M-augmenting path.

In fact, we prove next that maximum matchings are characterized by the
absence of augmenting paths. We prove this by considering two matchings
and examining the set of edges belonging to exactly one of them. We define
this operation for any two graphs with the same vertex set. (The operation is
defined in general for any two sets; see Appendix A.)

3.1.7. Definition. If G and H are graphs with vertex set V, then the sym-
metric difference GaH is the graph with vertex set V whose edges are
all those edges appearing in exactly one of G and H. We also use this no-
tation for sets of edges; in particular, if M and M’ are matchings, then
MaM' = (M — M")U (M’ — M).



3.1.8. Example. In the graph below, M is the matching with five solid edges,
M’ is the one with six bold edges, and the dashed edges belong to neither M nor
M'. The two matchings have one common edge ¢; it is not in their symmetric
difference. The edges of MaM’ form a cycle of length 6 and a path of length 3. &

3.1.9. Lemma. Every component of the symmetric difference of two matchings
is a path or an even cycle.

Proof: Let M and M’ be matchings, and let F = MaM’. Since M and M’ are
matchings, every vertex has at most one incident edge from each of them. Thus
F has at most two edges at each vertex. Since A(F) < 2, every component of F
is a path or a cycle. Furthermore, every path or cycle in F alternates between
edges of M — M’ and edges of M’ — M. Thus each cycle has even length, with
an equal number of edges from M and from M'. n

3.1.10. Theorem. (Berge [1957]) A matching M in a graph G is a maximum
matching in G if and only if G has no M-augmenting path.






3.2. Algorithms and Applications

MAXIMUM BIPARTITE MATCHING

To find a maximum matching, we iteratively seek augmenting paths to en-
large the current matching. In a bipartite graph, if we don’t find an augmenting
path, we will find a vertex cover with the same size as the current matching,
thereby proving that the current matching has maximum size. This yields both
an algorithm to solve the maximum matching problem and an algorithmic proof
of the Konig—Egervary Theorem.

Given a matching M in an X, Y-bigraph G, we search for M-augmenting
paths from each M-unsaturated vertex in X. We need only search from vertices
in X, because every augmenting path has odd length and thus has ends in both
X and Y. We will search from the unsaturated vertices in X simultaneously.
Starting with a matching of size 0, a’(G) applications. of the Augmenting Path
Algorithm produce a maximum matching.

3.2.1. Algorithm. (Augmenting Path Algorithm).

Input: An X, Y-bigraph G, a matching M in G, and the set U of M-unsaturated
vertices in X.

Idea: Explore M-alternating paths from U, letting S € X and T C Y be the
sets of vertices reached.” Mark vertices of § that have been explored for path
extensions. As a vertex is reached, record the vertex from which it is reached.
Initialization: S=U and T = @.

Iteration: If S has no unmarked vertex, stop and report 7 U (X — S) as a min-
imum cover and M as a maximum matching. Otherwise, select an unmarked
x € S. To explore x, consider each y € N(x) such that xy ¢ M. If y is unsatu-
rated, terminate and report an M-augmenting path from U to y. Otherwise, y

is matched to some w € X by M. In this case, include y in T (reached from x)





















130 Chapter 3: Matchings and Factors

3.2.14.* Application. Street Sweeping and the Transportation Problem. A
cleaning machine sweeping a curb must move in the same direction as traffic.

This yields a digraph; a two-way street generates two oppositely directed edges,
while a one-way street generates two edges in the same direction. We consider
a simple version of the Street Sweeping Problem, discussed in more detail
in Roberts [1978] as based on Tucker-Bodin [1976].

In New York City, parking is prohibited from some curbs each day to allow
for street sweeping. For each day, this defines a sweep subgraph G of the full
digraph H of curbs, consisting of these available for sweeping. Each e € E(H)
has a deadheading time ¢ (e) needed to travel it without sweeping.

The question is how to sweep G while minimizing the total deadheading
time spent without sweeping. This is o generalization of a directed version of
the Chinese Postman Problem. If indegree equals outdegree at each vertex of
G, then no deadheading is needed. Otherwise, we duplicate edges of G or add
edges from H to obtain an Eulerian digraph G’ containing G.

Let X be the set of vertices with excess indegree; let o(x) = dg (x) — d} (x)
for x € X. Let Y be the set witl excess outdegree; let 3(y) = dg (y) — dg (y) for

y € Y. Notethat 3 yo(x) =3 ., 3(y). Toobtain G’' from G, we must add
o(x) edges with tails at x € X and d(y) edges with heads at y € Y. Since G’
needs net outdegree 0 at each vertex, the additions form paths from X to Y. The
cost c(xy) of an x, y- pa‘rh is the distance from x to y in the weighted digraph H,
which can be found ; oy Dijkstra’s Algorithm.

This yields the Transportation Problem. Given supply o(x) for x € X,
demand d(y) for y € Y, cost c(xy) per unit sent from x to y, and } o(x) =

)" 3(y), we want to satisfy the demands at least total cost. A version of the

problem was introduced by Kantorovich [1939]; the form above arose (with a
constructive solution) in Hitchcock [1941] (see also Koopmans [1947]). The
problem is discussed at length in Ford—Fulkerson [1962, p93-130].

When the supplies and demands are rational, the Assignment Problem
can be applied. First scale up to obtain integer supplies and demands. Next
define a matrix with )_ o (x) rows and columns. For each x € X, create o(x)
rows. For each y € Y, create §(y) columns. When row i and-column j represent
x and v, let w;; = M — c¢(xy), where M = max,,c(xy). A maximum weight

matchlng now yields a minimum cost solution to the Transportation Problem.
A generalization of the Transportation Problem appears in Section 4.3. B





