1 The Hungarian Algorithm in $O(n^4)$ Time

In the following, we summarize the Pseudo-Code for the $O(n^4)$ time implementation of the Hungarian algorithm, using the procedures developed for the Maximum Bipartite Matching problem.

Let G = (V, E) be the input complete bipartite graph with partite sets A and B, where |A| = |B| = n, and edge edge $w_{u,v}$ for all $u, v \in E$. The algorithm goes as follows.

1. $M \longleftarrow \emptyset$.

For each $v \in V$, $y_v := \begin{cases} \max_{b \in B} w_{v,b}, & \text{if } v \in A, \\ 0, & \text{otherwise.} \end{cases}$

- 2. For each unmatched vertex $u \in A$, do
 - (a) Mark all the vertices as *unvisited*.
 - (b) Repeat the following, until Aug-Path(u) on $G_y = (V, E_y)$ returns true.
 - Let S be the set of vertices in A that are marked as visited.
 Let T be the set of vertices in B that are matched to vertices in S \ {u}.
 - $\epsilon \leftarrow \min_{a \in S, b \in B \setminus T} (y_a + y_b w_{a,b}).$
 - Set $y_a \longleftarrow y_a \epsilon$ for each $a \in S$. Set $y_b \longleftarrow y_b + \epsilon$ for each $b \in T$.
 - Mark all vertices as *unvisited*.
- 3. Output M as the maximum weight matching and y as the minimum weight vertex cover.

Note that, we don't need to construct the graph $G_y = (V, E_y)$ explicitly. It suffices to modify the procedure Aug-Path(), so that it only follows tight edges when exploring.