
176 Chapter 4: Connectivity and Paths

4.3. Network Flow Problems

Consider a network of pipes where valves allow flow in only one direction.

Each pipe has a capacity per unit time. We model this with a vertex fur each

junction and a (directed) edge for each pipe, weighted by the capacity. We also

assume that flow cannot accumulate at a junction. Given two locations s, t in

the network, we may ask “what is the maximum flow (per unit time) from s to /?”

This question arises in many contexts. The network may represent roads

with traffic capacities, or links in a computer network with data transmission

capacities, or currents in an electrical network. There are applications in in-

dustrial settings and to combinatorial min-max theorems. The seminal book on

the subject is Ford-Fulkerson [1962]. More recently, Ahuja-Magnanti-Orlin

[1993] presents a thorough treatment of network flow problems.

4.3.1. Definition. A network is a digraph with a nonnegative capacity c(e)

on each edge e and a distinguished source vertex s and sink vertex t.

Vertices are also called nodes. A flow / assigns a value /

(

e) to each edge

e. We write f+ (v) for the total flow on edges leaving v and f~(v) for the

total flow on edges entering v. A flow is feasible if it satisfies the ca-

pacity constraints 0 < /(e) < c(e) for each edge and the conservation
constraints f

+ (v) = f~(v) for each node v £ {5 , f).

MAXIMUM NETWORK FLOW

We consider first the problem of maximizing the net flow into the sink.

4.3.2. Definition. The value val(/) of a flow / is the net flow f~{t) - f
+ U)

into the sink. A maximum flow is a feasible flow ofmaximum value.

4.3.3. Example. The zero flow assigns flow 0 to each edge; this is feasible.

In the network below we illustrate a nonzero feasible flow. Each capacities are

shown in bold, flow values in parentheses. Our flow / assigns f(sx) = f(vt) =
0, and /(e) = 1 for every other edge e. This is a feasible flow ofvalue 1.

(0)2

t s

(1)2

A path from the source to the sink with excess capacity would allow us to

increase flow. In this example, no path remains with excess capacity, but the

Section 4.3: Network Flow Problems 177

flow /' with f'(vx) = 0 and /'(e) = 1 for e 56 vx has value 2. The flow / is

“maximal” in that no other feasible flow can be found by increasing the flow on
some edges, but / is not a maximum flow.

We need a more general way to increase flow. In addition to traveling

forward along edges with excess capacity, we allow traveling backward (against

the arrow) along edges where the flow is nonzero. In this example, we can

travel from * to x to v to t . Increasing the flow by 1 on .vx and vt and decreasing

it by one on vx changes / into /'.

4.3.4. Definition. When / is a feasible flow in a network N, an /-augmenting
path is a source-to-sink path P in the underlying graph G such that for

each e e E(P),

a) if P follows e in the forward direction, then f(e) < c(e).

b) if P follows e in the backward direction, then /(e) > 0.

Let e(e) = c(e) — /(e) when e is forward on P, and let e(e) = /(e) when e is

backward on P. The tolerance of P is mineS£ {/>)
e(e).

As in Example 4.3.3, an /-augmenting path leads to a flow with larger

value. The definition of /-augmenting path ensures that the tolerance is posi-

tive; this amount is the increase in the flow value.

4.3.5. Lemma. If P is an /-augmenting path with tolerance z, then changing

flow by +z on edges followed forward by P and by —z on edges followed

backward by P produces a feasible flow /' with val(/') = val(/) + z.

Proof: The definition of tolerance ensures that 0 < f'(e) < c(e) for every edge

e, so the capacity constraints hold. For the conservation constraints we need

only check vertices of P, since flow elsewhere has not changed.

The edges of P incident to an internal vertex v ofP occur in one ofthe four

ways shown below. In each case, the change to the flow out of v is the same as

the change to the flow into v, so the net flow out of v remains 0 in /'.

Finally, the net flow into the sink t increases by z.

+ v + + v -— —•— — —*>—•—-»

—

— V + - V —

.

—«—•—•» —+

—

-* -

The flow on backward edges did not disappear; it was redirected. In ef-

fect, the augmentation in Example 4.3.3 cuts the flow path and extends each

portion to become a new flow path. We will soon describe an algorithm to find

augmenting paths.

Meanwhile, we would like a quick way to know when our present flow is a

maximum flow. In Example 4.3.3, the central edges seem to form a “bottleneck”;

we only have capacity 2 from the left half ofthe network to the right half. This

observation will give us a PROOF that the flow value can be no larger

178 Chapter 4: Connectivity and Paths

4.3.6. Definition. In a network, a source/sink cut [5, T] consists ofthe edges

from a source set S to a sink set T, where 5 and T partition the set

of nodes, with s e S and t e T. The capacity of the cut [S, T], written

cap(S, T), is the total of the capacities on the edges of [5, T].

Keep in mind that in a digraph [5, T] denotes the set of edges with tail in

S and head in T. Thus the capacity of a cut [S, T] is completely unaffected by
edges from T to S.

Given a cut [S, T], every s, f-path uses at least one edge of [S, T], so intu-

ition suggests that the value of a feasible flow should be bounded by cap(S, T).

To make this precise, we extend the notion of net flow to sets of nodes. Let

f
+(U) denote the total flow on edges leaving U, and let f~(U) be the total flow

on edges entering U. The net flow out of U is then f+(U) — f~(U).

4.3.7. Lemma. If U is a set of nodes in a network, then the net flow out of U
is the sum of the net flows out of the nodes in U. In particular, if / is a

feasible flow and [S, 7] is a source/sink cut, then the net flow out of S and
net flow into T equal val(/).

Proof: The stated claim is that

f+ (U) - /"(I/) = £„€{7 [/
+ (v) -

We consider the contribution ofthe flow f(xy) on an edge xy to each side of

the formula. If x, y e U, then f(xy) is not counted on the left, but it contributes

positively (via f
+ (x)) and negatively (via f~(y)) on the right. If x, y £ U, then

f(xy) contributes to neither sum. lixy e [U, U

]

, then it contributes positively to

each sum. Ifxy € [U , U], then it contributes negatively to each sum. Summing
over all edges yields the equality.

When [5, T

]

is a source/sink cut and / is a feasible flow, net flow from' nodes

of S sums to f+ (s) — and net flow from nodes of T sums to f+ (t) —

which equals —val(/). Hence the net flow across any source/sink cut equals

both the net flow out of s and the net flow into t.

4.3.8. Corollary. (Weak duality) If/ is a feasible flow and [S, T] is a source/sink

cut, then val(/) < cap(S, T).

Proof: By the lemma, the value of / equals the net flow out of S. Thus

val(/) = f+(S) - f~(S) < f+ (S),

since the flow into S is no less than 0. Since the capacity constraints require

/
+ (S) < cap(S, T), we obtain val(/) < cap(5, T).

Section 4.3: Network Flow Problems 179

Among source/sink cuts, one with minimum capacity yields the best bound
on the value of a flow. This defines the minimum cut problem. The max flow

and min cut problems on a network are dual optimization problems.^ Given a

flow with value a and a cut with value a, the duality inequality in Corollary

4.3.8 PROVES that the cut is a minimum cut and the flow is a maximum flow.

If every instance has solutions with the same value to both the max prob-

lem and the min problem (“strong duality”), then a short proof of optimality

always exists. This does not hold for all dual pairs ofproblems (recall matching
and covering in general graphs), but it holds for max flow and min cut.

The Ford-Fulkerson algorithm seeks an augmenting path to increase the

flow value. If it does not find such a path, then it finds a cut with the same
value (capacity) as this flow; by Corollary 4.3.8, both are optimal. If no infi-

nite sequence of augmentations is possible, then the iteration leads to equality

between the maximum flow value and the minimum cut capacity.

4.3.9. Algorithm. (Ford-Fulkerson labeling algorithm)

Input: A feasible flow / in a network.

Output: An /-augmenting path or a cut with capacity val(/).

Idea: Find the nodes reachable from s by paths with positive tolerance. Reach-

ing t completes an /-augmenting path. During the search, R is the set ofnodes
labeled Reached, and S is the subset of R labeled Searched.

Initialization: R = [s}, S = 0.

Iteration: Choose v e R — S.

For each exiting edge vw with f{vw) < c(vw) and w £ R, add w to R.

For each entering edge uv with f(uv > 0) and u £ R, add u to R.

Label each vertex added to R as “reached”, and record v as the vertex reaching

it. After exploring all edges at v, add v to 5.

If the sink t has been reached (put in R), then trace the path reaching t

to report an /-augmenting path and terminate. If R — 5, then return the cut

[5, 5] and terminate. Otherwise, iterate.

4.3.10. Example. On the left below is the network of Example 4.3.3 with the

flow /. We run the labeling algorithm. First we search from s and find excess

capacity to u and x, labeling them reached. Now we have u, v e R - S. There
is no excess capacity on uv or xy, so searching from u reaches nothing, and also

+The precise notion of “dual problem” comes from linear programming. For our pur-

poses, dual problems are a maximization problem and a minimization problem such
that a <b whenever a and b are the values of feasible solutions to the max problem and
min problem, respectively. See Section 8.1 for further discussion.

180 Chapter 4: Connectivity and Paths

searching from x does not reach y. However, there is nonzero flow on vx. Thus
we label v from x. Now v is the only element of R — S, and searching from v

reaches t. We labeled t from v, v from x, and x from s, so we have found the

augmenting path s, x, v, t.

The tolerance on this path is 1, so the augmentation increases the flow

value by 1. In the new flow f shown on the right, every edge has unit flow

except f'(vx) = 0. When we run the labeling algorithm again, we have excess

capacity on su and .vx and can label [k, x}, but from these nodes we can label no

others. We terminate with R = S = {s, u,x}. The capacity of the resulting cut

[S, S] is 2, which equals val(/') and proves that f is a maximum flow.

Repeated use of the labeling algorithm allows us to solve the maximum
flow problem and prove the strong duality relationship.

4.3.11. Theorem. (Max-flow Min-cut Theorem—Ford and Fulkerson [1956]) In

every network, the maximum value of a feasible flow equals the minimum
capacity of a source/sink cut.

Proof: In the max-flow problem, the zero flow (/(e) = 0 for all e) is always a

feasible flow and gives us a place to start. Given a feasible flow, we apply the

labeling algorithm. It iteratively adds vertices to S (each vertex at most once)

and terminates with t e R (“breakthrough”) or with S = R.

In the breakthrough case, we have an /-augmenting path and increase the

flow value. We then repeat the labeling algorithm. When the capacities are

rational, each augmentation increases the flow by a multiple of 1/a, where a

is the least common multiple of the denominators, so after finitely many aug-

mentations the capacity of some cut is reached. The labeling algorithm then

terminates with S = R.

When terminating thisjway, we claim that [5, T] is a source/sink cut with

capacity val(/), where T = S and / is the present flow. It is a cut because s e S

and t £ R = S. Since applying the labeling algorithm to the flow / introduces

no node of T into R, no edge from S to T has excess capacity, and no edge from
T to S has nonzero flow in /. Hence /

+ (S) = cap(S, T) and f~(S) = 0.

Since the net flow out of any set containing the/source but not the sink is

val(/), we have proved

val(/) = /
+
(S) - f-(S) = f

+ (S) = cap(S, T).

This proofofTheorem 4.3.11 requires rational capacities; otherwise, Algo-

rithm 4.3.9 may yield augmenting paths forever! Ford and Fulkerson provided

an example of this with only ten vertices (see Papadimitriou-Steiglitz [1982,

pl26-128]). Edmonds and Karp [1972] modified the labeling algorithm to use

at most (n
3 — n)/4 augmentations in an n-vertex network and work for all real

capacities. As in the bipartite matching problem (Theorem 3.2.22), this is done
by searching always for shortest augmenting paths. Faster algorithms are now
known; again we cite Ahuja-Magnanti-Orlin [1993] for a thorough discussion.

Section 4.3: Network Flow Problems 181

INTEGRAL FLOWS

In combinatorial applications, we typically have integer capacities and
want a solution in which the flow on each edge is an integer.

4.3.12. Corollary. (Integrality Theorem) If all capacities in a network are in-

tegers, then there is a maximum flow assigning integral flow to each edge.

Furthermore, some maximum flow can be partitioned into flows of unit

value along paths from source to sink.

Proof: In the labeling algorithm of Ford and Fulkerson, the change in flow

value when an augmenting path is found is always a flow value or the difference

between a flow value and a capacity. When these are integers, the difference is

also an integer. Starting with the zero flow, this implies that there is no first

time when a noninteger flow appears.

The algorithm thus produces a maximum flow with integer flow on each

edge. At each internal node, we now match units of entering flow to units of

exiting flow. This forms s, t -paths and perhaps cycles. Ifa cycle arises, then we
decrease flow on its edges by 1 to eliminate it without changing the flow value.

This leaves val(/) paths from s to t, each corresponding to a unit of flow.

The integrality theorem yields paths of unit flow. In applications, we build

networks where these units of flow have meaning.

The next two remarks show that the Max-flow Min-cut Theorem for net-

works with integer capacities is almost the same statement as Menger’s Theo-

rem for edge-disjoint paths in digraphs.

4,3.13. Remark. Menger from Max-flow Min-cut. When x, y are vertices in a

digraph D, we can view D as a network with source x and sink y and capacity

1 on every edge. Capacity 1 ensures that units of flow from x to y correspond

to pairwise edge-disjoint x, >>-paths in D. Thus a flow ofvalue k yields a set of

k such paths.

Similarly, every source/sink partition S, T defines a set ofedges whose dele-

tion makes y unreachable from x: the set [S, T], Since every capacity is 1, the

size of this set is cap(S, T).

The paths and the edge cut we have obtained might not be optimal, but by
the Max-flow Min-cut Theorem we have

X'D {x, y) > maxval(/) = mincap(5, T) > k'd {x
, y).

Since always k’(x, y) > \'(x, y), equality now holds.

182 Chapter 4: Connectivity and Paths

4.3.14. Remark. Max-flow Min-cut from Menger. To show that Menger’s The-

orem implies the Max-flow Min-cut Theorem for rational capacities, we take

an arbitrary network and transform it into a digraph where we apply Menger’s

Theorem. By multiplying all capacities by the least common denominator, we
may assume that the capacities are integers.

Given a network N with integer capacities, we form a digraph D by split-

ting each edge of capacity j into j edges with the same endpoints. For N,

duality yields maxval(/) < min cap (5, T). This time we want to use Menger’s

Theorem on D to obtain the reverse inquality, so in contrast to Remark 4.3.13

our desired computation is

maxval(/) > k'D (s, t) = k’d (s, t) > mincap(5', T).

A set of A'(s, t) pairwise edge-disjoint s, ? -paths in D collapses into a flow

of value \’(s, t) in N, since the number of copies of each edge in D equals the

capacity ofthe edge in N. Thus maxval(/) > X'(s, t).

Now, let F be a set of k'(s, t) edges disconnecting t from s in D. If e e F
,

then the minimality of F implies that D — (F — e) has an s , f-path P through

e. If some other copy e' of the edge e = uv is not in F, then P can be rerouted

along e’ to obtain an s , f-path in D — F. Therefore, F contains all copies or no

copies of each multiple edge in D. Hence k'(s, t) is the sum of the capacities on

a set of edges that disconnects t from s in N

.

Letting S be the set of vertices

reachable from s in D - F, we have cap(S, T) = k'(s , /). The minimum cut has

at most this capacity, so min cap (S, T) < and we have proved all the

needed inequalities.

For combinatorial applications, Menger’s Theorem may yield simpler proofs

than the Max-flow Min-cut Theorem (compare Theorem 4.2.25 with ??). Never-

theless, our proof of Menger’s Theorem in Section 4.2 is awkward to implement
algorithmically. For large-scale computations, network flow and the Ford-

Fulkerson labeling algorithm are more appropriate. Indeed, most algorithms

that compute connectivity in graphs and digraphs use network flow methods
(Stoer-Wagner [1994] presents a different approach).

We present other network models for combinatorial problems. For exam-
ple, the other local versions of Menger’s Theorem can also be obtained directly.

4.3.15. Remark. Other transformations. For each version of Menger’s Theo-

rem, we encode the path problem using network flows with integer capacities.

To obtain a network model for the problem of internally disjoint paths in a

digraph D, we must prevent two units of flow from passing through a vertex.

This can be done by replacing each vertex v with two vertices v~ , v
+ that inherit

the entering and exiting edges at v. By adding an edge of unit capacity from

v~ to v+
,
we obtain fhe effect of limiting flow through v to one unit. By putting

very large capacity (essentially infinite) on the edges that were in D, we ensure

that a minimum cut will count only edges of the form v~v+

To obtain a network model for the problem ofedge-disjoint paths in a graph
G, we must permit flow to pass either way in an edge. This can be done by

Section 4.3: Network Flow Problems 183

replacing each edge uv with two directed edges uv and vu. When the network

sends unit flow in both directions, in effect the edge is not being used at all.

In each case, a flow in the network provides a set of paths, and a minimum
cut leads to a separating set of vertices or edges. As in Remark 4.3.13, duality

then gives us the desired equality in Menger’s Theorem. To model the problem

of internally disjoint paths in a graph, we need both of these transformations.

Exercises 5-7 request the details of these proofs.

4.3.16. Application. Baseball Elimination Problem {Schwartz [1966]). At

some time during the season, we may wonder whether team X can still win
the championship. In other WQrds, can winners be assigned for the remaining

games so that no team ends with more victories than X? If so, then such an as-

signment exists with X winning all its remaining games, reaching W wins. We
want to know whether winners can be chosen for other games so that no team
obtains more than W wins. To test this, we create a network where units of

flow correspond to the remaining games.

Let Xi , . . .

,

Xn be the other teams. Include nodes x\, ... ,xn for the n teams,

nodes y,j for the (”) pairs ofteams, and a source s and sink t. Put an edge from

s to each team node and an edge from each pair node to t. Each pair node ytj
is entered by edges from x, and xj.

The capacities model the constraints. The capacity on edge ytjt is atJ , the

number of remaining games between X, and Xj. Given that X
t
has won w,

games already, the capacity on edge sx, is W — to, to keep X in contention. The
capacity on edges xtyij and xjyij is oo (the number ofgames x, can win from xj

is constrained by the capacity on y,jf).

By the integrality theorem, a maximum flow breaks into flow units. Each

unit corresponds to one game; the first edge specifies the winner, and the last

edge specifies the pair. The network has a flow of value
j
ai.j if and only if

all remaining games can be played with no team exceeding W wins; this is the

condition for X remaining in contention.

By the Max-flow Min-cut Theorem, there is a flow ofvalue ai.j ifand only

if every cut has capacity at least J2 ai.j- Let 5, T be a cut with finite capacity,

184 Chapter 4: Connectivity and Paths

and let Z = {i: x; E T}. Since c(x;y;,j) = oo, we cannot have x; E Sand Yi,j E
T; thus Yi,j E S whenever i or j is not in Z. To minimize capacity, we put
Yi,j E T whenever {i, j} £_ Z. Now cap(S, T) = L;ez(W - w;) + L{i,j}g;z ai,j• The
condition that every cut have capacity at least L a;,j becomes

z)w - W;) 2: L ai,j for all z £ [n].
ieZ {i,j}£;Z

Note that this condition is obviously necessary; it states that we need enough
leeway in the total wins among teams indexed by Z in order to accommodate
winners for all the games among these teams. We have proved TONCAS. ■

Combinatorial applications of network flow usually involve showing that
the desired configuration exists if and only if a related network has a large
enough flow. As in Application 4.3.16, the Max-flow Min-cut Theorem then
yields a necessary and sufficient condition for its existence. Other examples
include most of Exercises 5- and also Exercise 13 and Theorems
4.3.17-4.3.18.

