
2. Tournaments

A tournament is an oriented graph T = (V, E) such that (x, x) 6∈ E for all x ∈ V , and for
any two vertices x 6= y exactly one of (x, y) and (y, x) belongs to E. That is, each tournament
is obtained from a complete graph by orienting its edges. The name tournament is natural, since
one can think of the set V as a set of players in which each pair participates in a single match,
where (x, y) ∈ E iff x beats y.

Say that a tournament has the property Pk if for every set of k players there is one who beats
them all, i.e., if for any subset S ⊆ V of k players there exists a player y 6∈ S such that (y, x) ∈ E
for all x ∈ S.

Theorem 3.1 (Erdős 1963a). If n ≥ k22k+1, then there is a tournament of n players that has
the property Pk.

Proof. Consider a random tournament of n players, i.e., the outcome of every game is
determined by the flip of fair coin. For a set S of k players, let AS be the event that no y 6∈ S
beats all of S. Each y 6∈ S has probability 2−k of beating all of S and there are n−k such possible
y, all of whose chances are mutually independent. Hence Pr [AS ] = (1 − 2−k)n−k and

Pr
[⋃

AS

]
≤
(

n

k

)
(1 − 2−k)n−k <

nk

k!
e−(n−k)/2k ≤ nke−n/2k

.

If n ≥ k22k+1, this probability is strictly smaller than 1. Thus, for such an n, with positive
probability no event AS occurs. This means that there is a point in the probability space for
which none of the events AS happens. This point is a tournament T and this tournament has the
property Pk. �

3. Universal sets

A set of 0-1 strings of length n is (n, k)-universal if, for any subset of k coordinates S =
{i1, . . . , ik}, the projection

A↾S := {(ai1
, . . . , aik

) : (a1, . . . , an) ∈ A}

of A onto the coordinates in S contains all possible 2k configurations.

On the other hand, a simple probabilistic argument shows that (n, k)-universal sets of size k2k 

log2 n exist (note that 2k is a trivial lower bound).

(
n
k

)
2k(1 − 2−k)r < 1, then there is an (n, k)-Theorem 3.2 (Kleitman–Spencer 1973). If 

universal set of size r.

Proof. Let A be a set of r random 0-1 strings of length n, each entry of which takes values
0 or 1 independently and with equal probability 1/2. For every fixed set S of k coordinates and
for every fixed vector v ∈ {0, 1}k,

Pr [v 6∈ A↾S ] =
∏

a∈A

Pr [v 6= a↾S ] =
∏

a∈A

(
1 − 2−|S|

)
=
(
1 − 2−k

)r
.

Since there are only
(

n
k

)
2k

n
)possibilities to choose a pair (S, v), the set A is not (n, k)-universal

with probability at most
(

k 2k(1 − 2−k)r, which is strictly smaller than 1. Thus, at least one set
A of r vectors must be (n, k)-universal, as claimed. �



4. Covering by bipartite cliques

A biclique covering of a graph G is a set H1, . . . , Ht of its complete bipartite subgraphs such
that each edge of G belongs to at least one of these subgraphs. The weight of such a covering is
the sum

∑t
i=1 |V (Hi)| of the number of vertices in these subgraphs. Let bc(G) be the smallest

weight of a biclique covering of G. Let Kn be a complete graph on n vertices.

Theorem 3.3. If n is a power of two, then bc(Kn) = n log2 n.

Proof. Let n = 2m. We can construct a covering of Kn as follows. Assign to each vertex
v its own vector xv ∈ {0, 1}m, and consider m = log2 n bipartite cliques H1, . . . , Hm, where two
vertices u and v are adjacent in Hi iff xu(i) = 0 and xv(i) = 1. Since every two distinct vectors
must differ in at least one coordinate, each edge of Kn belongs to at least one of these bipartite
cliques. Moreover, each of the cliques has weight (n/2) + (n/2) = n, since exactly 2m−1 = n/2
of the vectors in {0, 1}m have the same value in the i-th coordinate. So, the total weight of this
covering is mn = n log2 n.

To prove the lower bound we use a probabilistic argument. Let A1 × B1, . . . , At × Bt be
a covering of Kn by bipartite cliques. For a vertex v, let mv be the number of these cliques
containing v. By the double-counting principle,

t∑

i=1

(|Ai| + |Bi|) =
n∑

v=1

mv

is the weight of the covering. So, it is enough to show that the right-hand sum is at least n log2 n.
To do this, we throw a fair 0-1 coin for each of the cliques Ai ×Bi and remove all vertices in Ai

from the graph if the outcome is 0; if the outcome is 1, then we remove Bi. Let X = X1 + · · ·+Xn,
where Xv is the indicator variable for the event “the vertex v survives.”

Since any two vertices of Kn are joined by an edge, and since this edge is covered by at least
one of the cliques, at most one vertex can survive at the end. This implies that E [X] ≤ 1. On
the other hand, each vertex v will survive with probability 2−mv : there are mv steps that are

“dangerous” for v, and in each of these steps the vertex v will survive with probability 1/2. By
the linearity of expectation,

∑n

v=1

2−mv =
∑n

v=1

Pr [v survives] =
∑n

v=1

E [Xv] = E [X] ≤ 1 .

We already know that the arithmetic mean of numbers a1, . . . , an is at least their geometric mean:

1

n

n∑

v=1

av ≥
(∏n

v=1

av

)1/n

.

When applied with av = 2−mv , this yields

1 1

n

∑n

v=1
n

≥ 2−mv ≥
(∏n

v=1

2−mv

)1/n

= 2− n
1
∑n

v=1
mv ,

from which 2
1
n

∑n

v=1
mv ≥ n, and hence, also

∑n
v=1 mv ≥ n log2 n follows. �

5. 2-colorable families

Let F be a family of subsets of some finite set. Can we color the elements of the underlying
set in red and blue so that no member of F will be monochromatic? Such families are called
2-colorable.

Recall that a family is k-uniform if each member has exactly k elements.



Theorem 3.4 (Erdős 1963b). Every k-uniform family with fewer than 2k−1 members is 2-
colorable.

Proof. Let F be an arbitrary k-uniform family of subsets of some finite set X. Consider
a random 2-coloring obtained by coloring each point independently either red or blue, where
each color is equally likely. Informally, we have an experiment in which a fair coin is flipped to
determine the color of each point. For a member A ∈ F , let XA be the indicator random variable
for the event that A is monochromatic. So, X =

∑
A∈F XA is the total number of monochromatic

members.
For a member A to be monochromatic, all its |A| = k points must receive the same color.

Since the colors are assigned at random and independently, this implies that each member of F
will be monochromatic with probability at most 2 · 2−k = 21−k (factor 2 comes since we have two
colors). Hence,

E [X] =
∑

A∈F
E [XA] =

∑

A∈F
21−k = |F| · 21−k .

Since points in our probability space are 2-colorings, the pigeonhole property of expectation implies
that a coloring, leaving at most |F| · 21−k members of F monochromatic, must exist.

In particular, if |F| < 2k−1 then no member of F will be left monochromatic. �

The proof was quite easy. So one could ask whether we can replace 2k−1 by, say, 4k? By
turning the probabilistic argument “on its head” it can be shown that this is not possible. The
sets now become random and each coloring defines an event.

Theorem 3.5 (Erdős 1964a). If k is sufficiently large, then there exists a k-uniform family
F such that |F| ≤ k22k and F is not 2-colorable.

Proof. Set r = ⌊k2/2⌋. Let A1, A2, . . . be independent random members of
([r]

k

)
, that is, Ai

ranges over the set of all A ⊆ {1, . . . , r} with |A| = k, and Pr [Ai = A] =
(

r
k

)−1
. Consider the

family F = {A1, . . . , Ab}, where b is a parameter to be specified later. Let χ be a coloring of

{1, . . . , r} in red and blue, with a red points and r − a blue points. Using Jensen’s inequality, for
any such coloring and any i, we have

)[Pr [Ai is monochromatic] = Pr Ai is red] + Pr [Ai is blue]

=

(
a
k +

(
r−a

k

)
(

r
k

) ≥ 2

(
r/2

k

)/(
r

k

)
:= p,

where, by the asymptotic formula for the binomial coefficients, p is about e−121−k. Since the

members Ai of F are independent, the probability that a given coloring χ is legal for F equals

∏b

(1 − Pr [Ai is monochromatic]) ≤ (1 − p)b.
i=1

Hence, the probability that at least one of all 2r possible colorings will be legal for F does not
exceed 2r(1 − p)b < er ln 2−pb, which is less than 1 for b = (r ln 2)/p = (1 + o(1))k22k−2e ln 2. But
this means that there must be at least one realization of the (random) family F , which has only
b sets and which cannot be colored legally. �

Let B(k) be the minimum possible number of sets in a k-uniform family which is not 2-
colorable. We have already shown that

2k−1 ≤ B(k) ≤ k22k .

As for exact values of B(k), only the first two B(2) = 3 and B(3) = 7 are known. The value
B(2) = 3 is realized by the graph K3.

(See the next two pages for 
  Jensen's inequality & 
  the aymptotic formula 
  for  binomial coefficients.)



Theorem 3.6. Let F be an arbitrary family of subsets of a finite set, each of which has at
least two elements. If every two non-disjoint members of F share at least two common elements,
then F is 2-colorable.

Proof. Let X = {x1, . . . , xn} be the underlying set. We will color the points x1, . . . , xn one-
ne so that we do not color all points of any set in with the same color. Color the first pointby-o F 

x1 arbitrarily. Suppose that x1, . . . , xi are already colored. If we cannot color the next element
xi+1 in red then this means that there is a set A ∈ F such that A ⊆ {x1, . . . , xi+1}, xi+1 ∈ A and
all the points in A \ {xi+1} are red. Similarly, if we cannot color the next element xi+1 in blue,
then there is a set B ∈ F such that B ⊆ {x1, . . . , xi+1}, xi+1 ∈ B and all the points in B \ {xi+1}
are blue. But then A ∩ B = {xi+1}, a contradiction. Thus, we can color the point xi+1 either
red or blue. Proceeding in this way we will finally color all the points and no set of F becomes
monochromatic. �

There is yet another class of 2-colorable families, without any uniformity restriction.

λ a + (1−λ )b ba

Figure 1. A convex function.

We mention one important inequality, which is especially useful when dealing with averages.
A real-valued function f(x) is convex if

f(λa + (1 − λ)b) ≤ λf(a) + (1 − λ)f(b) ,

for any 0 ≤ λ ≤ 1. From a geometrical point of view, the convexity of f means that if we draw a
line l through points (a, f(a)) and (b, f(b)), then the graph of the curve f(z) must lie below that
of l(z) for z ∈ [a, b]. Thus, for a function f to be convex it is sufficient that its second derivative
is nonnegative.

Proposition 1.12 (Jensen’s Ineq
(

uality).
)
If 0 ≤ λi ≤ 1,

∑n
i=1 λi = 1 and f is convex, then

(14) f
i=1

λixi ≤
∑n n∑

i=1

λif(xi) .

Proof. Easy induction on the number of summands n. For n = 2 this is true, so assume the
inequality holds for the number of summands up to n, and prove it for n + 1. For this it is enough
to replace the sum of the first two terms in λ1x1 + λ2x2 + . . . + λn+1xn+1 by the term

(
λ1

λ1 + λ2
x1 +

λ2

λ1 + λ2
x2

)
,(λ1 + λ2)

and apply the induction hypothesis. �



Tighter (asymptotic) estimates for binomial coefficient can be obtained using the famous 
Stirling formula for the factorial:

(7) n! =
(n

e

)n √
2πn eαn ,

where 1/(12n + 1) < αn < 1/12n. This leads, for example, to the following elementary but very
useful asymptotic formula for the k-th factorial:

(8) (n)k = nke− 2
k2

n −
6
k
n

3

2 +o(1) valid for k = o(n3/4),

and hence, for binomial coefficients:

(9)

(
n

k

)
=

nke− 2
k2

n −
6
k
n

3

2

k!
(1 + o(1)) .
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