
The Lovász Sieve

Assume that we have a family of “bad” events. How can we make sure that there is some
non-zero probability that none of the bad events will happen? By the union bound Pr [A ∪ B] ≤
Pr [A] + Pr [B], this probability is non-zero if the sum of probabilities of all these bad events
is smaller than 1. In one sense this is best possible: when bad events are pairwise disjoint, the
condition cannot be weakened. If we know that the bad events are independent, we can get a much
better bound, by multiplying all the probabilities that each single bad event does not happen. This
will work as long as each bad event has probability smaller than 1. But this will immediately fail,
if at least two of the bad events are not independent.

In such cases—when there is some relatively small amount of dependence between events—one
can use a powerful generalization of the union bound, known as the Lovász Local Lemma.

1. The Lovász Local Lemma

An event A is mutually independent of a collection of events if conditioning on any sub-
collection B1, . . . , Bm of these events does not affect the probability of A, that is,

Pr[A | C1 · · · Cm] = Pr [A]

for all Ci ∈ {Bi, Bi}, i = 1, . . . , m. Note that A might be independent of each of the events
B1, . . . , Bm, but not be mutually independent of them. To see this, consider flipping a fair coin
twice and the three events: B1, B2, A, where Bi is the event that the i-th flip is a head and A is the
event that both flips are the same. Then A is independent of B1 and of B2 but Pr[A | B1B2] = 1.

Let A1, . . . , An be events. A graph G = (V, E) on the set of vertices V = {1, . . . , n} is said to
be a dependency graph if, for all i, Ai is mutually independent of all the events Aj such that j is not
adjacent to i in G, i.e., for which {i, j} 6∈ E. We emphasize that Ai must not only be independent
of each such Aj individually but also must be independent of any boolean combination of the Aj ’s.
Such a graph G may be not uniquely defined, but we will not care about this. We will only be
interested in the smallest possible degree of such a graph, which we call the degree of dependence
of the events A1, . . . , An.

The following fact is known as the Lovász Local Lemma.

Lemma 19.1 (Erdős–Lovász 1975). Let A1, . . . , An be events with Pr[Ai] ≤ p for all i, and let
d be the degree of their dependence. If ep(d + 1) ≤ 1 then Pr[A1A2 · · · An] > 0.

As in the original proof of Erdős and Lovász, we will prove the lemma under the slightly
stronger condition 4pd ≤ 1, and later show that the lemma remains true under weaker condition
ep(d + 1) ≤ 1, as well.

In the proof we will use two properties of the conditional probability which follow fairly easily
from its definition as Pr [A | B ] = Pr [AB] /Pr [B]:

(114) Pr [A | BC ] =
Pr [AB | C ]

Pr [B | C ]

and

(115) Pr [A | BC ] · Pr [B | C ] · Pr [C] = Pr [ABC] .

Proof (Spencer 1995). Fix a dependency graph G of our events of degree d. We prove by induction 
on m that for any m events (calling them A1, . . . , Am for convenience only)

Pr[A1 | A2 · · · Am] ≤ 2p.



For m = 1 this is obvious. Let 2, . . . , k be the vertices from {2, . . . , m} which are adjacent to 1 in
the dependency graph G. Using the identity (114), we can write

(116) Pr[A1 | A2 · · · Am] =
Pr[A1A2 · · · Ak | Ak+1 · · · Am]

Pr[A2 · · · Ak | Ak+1 · · · Am]
.

We bound the numerator

Pr[A1A2 · · · Ak | Ak+1 · · · Am] ≤ Pr[A1 | Ak+1 · · · Am]

= Pr [A1] ≤ p

since A1 is mutually independent of Ak+1, . . . , Am. The denominator, on the other hand, can be
bounded by the induction hypothesis

Pr[A2 · · · Ak | Ak+1 · · · Am] = 1 − Pr[A2 ∪ · · · ∪ Ak | Ak+1 · · · Am]

≥ 1 −
k∑

i=2

Pr[Ai | Ak+1 · · · Am]

≥ 1 − 2p(k − 1) ≥ 1/2,

because k − 1 ≤ d and 2pd ≤ 1/2. Thus

Pr[A1 | A2 · · · Am] ≤ p/(1/2) = 2p,

completing the induction. Finally, by (??),

Pr[A1 · · · An] =

n∏

i=1

Pr[Ai | A1 · · · Ai−1] ≥ (1 − 2p)n > 0.

�

When the events Ai are not symmetric (i.e., when their probabilities might be very different) a
more general form of the Lovász sieve is appropriate. This generalization is due to Spencer (1977).

Lemma 19.2. Let G = (V, E) be a dependency graph of events A1, . . . , An. Suppose there exist
real numbers x1, . . . , xn, 0 ≤ xi < 1, so that, for all i,

Pr[Ai] ≤ xi ·
∏

{i,j}∈E

(1 − xj).

Then

Pr[A1A2 · · · An] ≥
n∏

i=1

(1 − xi).

In particular, with positive probability no event Ai holds.

Proof. The induction hypothesis of the earlier proof is replaced by

Pr[A1 | A2 · · · Am] ≤ x1,

and, using the same identity (??), the denominator of (??) is set equal to

k∏

j=2

Pr[Aj | Aj+1 · · · Am],

which by the induction hypothesis, is at least

k∏

j=2

(1 − xj) =
∏

{1,j}∈E

(1 − xj) . �

by (115)

(114)

(116)



The Lovász sieve works well when we have “much independence” between the events. In a
similar vein, there is also an estimate, due to Razborov (1988), which works well if the events are
“almost k-wise independent.”

Let A1, . . . , An be events, each of which appears with the same probability Pr [Ai] = p. If all
these events are mutually independent, then

Pr

[ n⋃

i=1

Ai

]
= 1 − Pr

[ n⋂

i=1

Ai

]
= 1 − (1 − p)n ≥ 1 − e−pn .

The mutual independence is a very strong requirement. It turns out that a reasonable estimate
can be obtained also in the case when Pr

[⋂
i∈I Ai

]
is only “near” to p|I| for the sets I of size up

to some number k; in this case the events A1, . . . , An are also called almost k-wise independent.

Lemma 19.3 (Razborov 1988). Let n > 2k be any natural numbers, let 0 < p, δ < 1, and let
A1, . . . , An be events such that, for every subset I ⊆ {1, . . . , n} of size at most k,

∣∣∣∣Pr

[⋂

i∈I

Ai

]
− p|I|

∣∣∣∣ ≤ δ.

Then

Pr

[ n⋃

i=1

Ai

]
≥ 1 − e−pn −

(
n

k + 1

)
(δk + pk).

Note that if the events are k-wise independent, then δ = 0 and the obtained estimate worse
by an additive term

(
n

k+1

)
pk than that for mutual independence.

Proof. Let us first consider the case where k is even. Let B1, . . . , Bn be independent events,
each having the success probability p. Applying the Bonferroni inequalities to Pr [

⋃n
i=1 Ai] and

Pr [
⋃n

i=1 Bi] , we obtain that

(117) Pr

[ n⋃

i=1

Ai

]
≥

k∑

ν=1

(−1)ν+1
∑

|I|=ν

Pr

[⋂

i∈I

Ai

]

and

(118) Pr

[ n⋃

i=1

Bi

]
≤

k∑

ν=1

(−1)ν+1
∑

|I|=ν

p|I| +
∑

|I|=k+1

pk+1.

The assumption of the lemma that A1, . . . , An are almost k-wise independent implies that the
right-hand side in (117) is at least

(119)

k∑

ν=1

(−1)ν+1
∑

|I|=ν

p|I| − δk

(
n

k

)
.

On the other hand, the independence of B1, . . . , Bn implies that

(120) Pr

[ n⋃

i=1

Bi

]
= 1 − (1 − p)n ≥ 1 − e−pn.

Combining (117), (118), (119) and (120) yields

Pr

[ n⋃

i=1

Ai

]
≥ 1 − e−pn − δk

(
n

k

)
− pk+1

(
n

k + 1

)

≥ 1 − e−pn −
(

n

k + 1

)
(δk + pk+1).



In the case where k is odd, we use the above argument with k − 1 substituted for k. �

2. Disjoint cycles

By a digraph we will mean a directed graph without parallel edges. Such a graph is k-regular
if every vertex has exactly k outgoing edges.

Theorem 19.4. Every k-regular digraph has a collection of ⌊k/(3 ln k)⌋ vertex-disjoint cycles.

Proof. Let G = (V, E) be a k-regular digraph. Set r := ⌊k/(3 ln k)⌋, and color the vertices
uniformly at random using colors {1, . . . , r}. That is, each vertex v gets a particular color in-
dependently and with the same probability 1/r. Let Av be the event that v does not have any
out-neighbor of the same color as v. (An out-neighbor of v is the second endpoint of an edge
leaving v.) We need only to show that Pr[∩v∈V Av] > 0.

Since each vertex has k out-neighbors, we have that

Pr[Av] =
(

1 − 1

r

)k

< e−k/r ≤ e−3 ln k = k−3 .

For a vertex v, let N(v) be the set consisting of v and all its k out-neighbors. Then Av is mutually
independent of the events in {Au : N(u) ∩ N(v) = ∅}. Since this set contains at most (k + 1)2

events, the degree of dependence of the events Av is d ≤ (k + 1)2. Hence, to apply the Lovász
Local Lemma we only need that 4k−3(k + 1)2 ≤ 1, which is true for k ≥ 6. For k < 6 the theorem
is trivially true since then r = 1. �

Alon, McDiarmid and Molloy (1996) proved that, in fact, Ω(k2) vertex-disjoint cycles exist

and conjectured that at least
(

k+1
2

)
cycles should exist.

3. Colorings

A striking feature of the Lovász sieve is the lack of conditions on the total number n of events
– only the degree of their dependence is important. This is particularly useful when dealing with
large families whose members share not too many points in common. Let us demonstrate this
with several typical examples.

First, let us consider 2-colorings of hypergraphs. Recall that a family of sets F is 2-colorable
if it is possible to color the points of the underlying set in red and blue, so that no member of F
is monochromatic. A family is k-uniform if all its members have size k.

2-
In Chap. 3 (see Theorem 3.4) we proved that if the family F is relatively small then it is 

colorable: Every k-uniform family of fewer than 2k−1 sets is 2-colorable.

Let us recall the argument. Suppose F is a k-uniform family with at most 2k−1 − 1 sets.
Consider a random coloring, each element independently colored red or blue with probability 1/2.
Any one member of F will then be monochromatic with probability 2 · 2−k = 21−k, and so the
probability that some member will be monochromatic, does not exceed |F| ·21−k, which is strictly
smaller than 1. Therefore, at least one coloring must leave no member of F monochromatic.

Now suppose that F has more than 2k members. Then the above random coloring will be
doomed since the chances of it to be a proper 2-coloring will tend to zero. Fortunately, we do
not require a high probability of success, just a positive probability of success. For example, if
F is a family of m mutually disjoint k-element subsets of some set, then the events Ai=“the i-th
member of F is monochromatic” are mutually independent, and so the probability that none of
them holds is exactly

(
1 − 2−(k−1)

)m
, which is positive no matter how large m is. Therefore, F

is 2-colorable.
Of course for general families F , the events A1, . . . , Am are not independent as some pairs of

members may intersect. In such situations the Lovász sieve shows its surprising power.

Theorem 19.5 (Erdős–Lovász 1975). If every member of a k-uniform family intersects at
most 2k−3 other members, then the family is 2-colorable.



Proof. Suppose F = {S1, . . . , Sm} is a family of k-element subsets of some set X. Consider
a random coloring of X, each point independently colored red or blue with probability 1/2. Let
Ai denote the event that Si is monochromatic. Then Pr[Ai] = p where p = 2(1/2)|Si| = 21−k.
Our goal is to show that Pr[A1 · · · Am] > 0. Define a dependency graph by joining Ai and Aj

if and only if Si ∩ Sj 6= ∅. By the assumption, this graph has degree at most d = 2k−3. Since
4dp = d23−k ≤ 1, Lemma ?? yields the result. �

In the general (not necessarily uniform) case we have the following.

Theorem 19.6 (Beck 1980). Let F be a family of sets, each of which has at least k (k ≥ 2)
points. Also suppose that for each point v,

∑

S∈F :v∈S

(1 − 1/k)−|S|2−|S|+1 ≤ 1

k
.

Then F is 2-colorable.

Proof. Let F = {S1, . . . , Sm} and (again) color the points with red and blue at random, in-
dependently of each other and with probability 1/2. Let Ai denote the event that Si is monochro-
matic; hence Pr[Ai] = 2−|Si|+1. Consider the same dependency graph G = (V, E) as above:
{i, j} ∈ E if and only if Si ∩ Sj 6= ∅. We shall prove that the condition of Lemma ?? is satisfied
with

xi := (1 − 1/k)
−|Si|

2−|Si|+1.

Indeed, by the definition of the graph G, for every i = 1, . . . , m we have

xi

∏

{i,j}∈E

(1 − xj) ≥ xi

∏

v∈Si

∏

j:v∈Sj

(1 − xj)

≥ xi

∏

v∈Si

[
1 −

∑

j:v∈Sj

xj

]
≥ xi(1 − 1/k)|Si|,

since, by the condition of the theorem,
∑

j:v∈Sj
xj ≤ 1/k. Thus,

xi

∏

{i,j}∈E

(1 − xj) ≥ xi (1 − 1/k)
|Si|

= 2−|Si|+1 = Pr[Ai].

By the application of Lemma ?? we obtain Pr[A1A2 · · · An] > 0, i.e., there is a 2-coloring in which
no set of F is monochromatic. �

Later, Beck (1991) was even able to design an efficient randomized algorithm finding a desired
coloring. This was the first time when an algorithmic version of the Lovász Local Lemma was
found.

Let us now consider yet another coloring problem. Let F be a family of k-element sets and
suppose that no point appears in more than l of its members. By induction on k, it can be shown
(see Exercise ??) that then it is possible to color the points in r = l(k − 1) + 1 colors so that no
member of F contains two points of the same color. On the other hand, if we have only r < k
colors, then every member of F will always have at least k/r points of the same color. Is it
possible, also in this case (when r < k) to find a coloring such that no member has much more
than k/r points of one color? The following result says that, if k = l and if we have about k/ log k
colors, then such a coloring exists.

Theorem 19.7 (Füredi–Kahn 1986). Let k be sufficiently large. Let F be a k-uniform family
of sets and suppose that no point belongs to more than k sets of F . Then it is possible to color the
points in r = ⌊k/ log k⌋ colors so that every member of F has at most v = ⌈2e log k⌉ points of the
same color.

In fact, Füredi and Kahn proved a stronger result, where v = ⌊4.5 log k⌋ and the members of
F have size at most k. The argument then is the same but requires more precise computations.

19.2

19.2



Proof. Color the points of X by r colors, each point getting a particular color randomly and
independently with probability 1/r. Let A(S, i) denote the event that more than v points of S
get color i. We are going to apply Lemma ?? to these events. Events A(S, i) and A(S′, i′) can be
dependent only if S ∩ S′ 6= ∅. So, we consider the following dependency graph G for these events:
the vertex set consists of the pairs (S, i) where S ∈ F and 1 ≤ i ≤ r, and two vertices (S, i) and
(S′, i′) are joined by an edge if and only if S ∩ S′ 6= ∅.

Let d be the maximum degree of G. By the condition on our family F , every member can
intersect at most k(k − 1) other members, implying that d ≤ (1 + k(k − 1))r ≤ k3. By Lemma ??,
it remains to show that each of the events A(S, i) can happen with probability at most 1/(4k3).

Since |S| = k, the probability that only the points of a subset I ⊆ S get color i, is (1/r)|I|(1 −
1/r)k−|I|. Summing over all subsets I of S, then the event A(S, i) happens with probability at
most

∑

t>v

(
k

t

)(
1

r

)t(
1 − 1

r

)k−t

≤
(

k

v

)(
1

r

)v

<

(
ek

vr

)v

≤ 2−v < k−4.

By Lemma ??, with positive probability, none of the events A(S, i) will happen, and the desired 
coloring exists. �
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