
4. Double counting

The double counting principle states the following “obvious” fact: if the elements of a set are 
counted in two different ways, the answers are the same.

In terms of matrices the principle is as follows. Let M be an n × m matrix with entries 0 and
1. Let ri be the number of 1s in the i-th row, and cj be the number of 1s in the j-th column.
Then

n∑

i=1

ri =
m∑

j=1

cj = the total number of 1s in M .

The next example is a standard demonstration of double counting. Suppose a finite number
of people meet at a party and some shake hands. Assume that no person shakes his or her own
hand and furthermore no two people shake hands more than once.

Handshaking Lemma. At a party, the number of guests who shake hands an odd number of
times is even.

Proof. Let P1, . . . , Pn be the persons. We apply double counting to the set of ordered pairs
(Pi, Pj) for which Pi and Pj shake hands with each other at the party. Let xi be the number of
times that Pi shakes hands, and y the total number of handshakes that occur. On one hand, the
number of pairs is

∑n
i=1 xi, since for each Pi the number of choices of Pj is equal to xi. On the

other hand, each handshake gives rise to two pairs (Pi, Pj) and (Pj , Pi); so the total is 2y. Thus∑n
i=1 xi = 2y. But, if the sum of n numbers is even, then evenly many of the numbers are odd.

(Because if we add an odd number of odd numbers and any number of even numbers, the sum
will be always odd). �

This lemma is also a direct consequence of the following general identity, whose special version
for graphs was already proved by Euler. For a point x, its degree or replication number d(x) in a
family F is the number of members of F containing x.

Proposition 1.7. Let F be a family of subsets of some set X. Then

(10)
∑

x∈X

d(x) =
∑

A∈F
|A| .

Proof. Consider the incidence matrix M = (mx,A) of F . That is, M is a 0-1 matrix with
|X| rows labeled by points x ∈ X and with |F| columns labeled by sets A ∈ F such that mx,A = 1
if and only if x ∈ A. Observe that d(x) is exactly the number of 1s in the x-th row, and |A| is the
number of 1s in the A-th column. �

Graphs are families of 2-element sets, and the degree of a vertex x is the number of edges
incident to x, i.e., the number of vertices in its neighborhood. Proposition ?? immediately implies

Theorem 1.8 (Euler 1736). In every graph the sum of degrees of its vertices is two times the
number of its edges, and hence, is even.

The following identities can be proved in a similar manner (we leave their proofs as exercises):
∑

x∈∑Y

d(x) =
∑

A∈∑F
|Y ∩ A| for any Y ⊆ X.(11)

x∈X

d(x)2 =
A∈F

∑

x∈A

d(x) =
∑

A∈F

∑

B∈F
|A ∩ B| .(12)



Turán’s number T (n, k, l) (l ≤ k ≤ n) is the smallest number of l-element subsets of an
n-element set X such that every k-element subset of X contains at least one of these sets.

Proposition 1.9. For all positive integers l ≤ k ≤ n,

T (n, k, l) ≥
(

n

l

)/(k

l

)
.

Proof. Let F be a smallest l-uniform family over X such that every k-subset of X contains
at least one member of F . Take a 0-1 matrix M = (mA,B) whose rows are labeled by sets A in
F , columns by k-element subsets B of X, and mA,B = 1 if and only if A ⊆ B.

Let rA be the number of 1s in the A-th row and cB be the number of 1s in the B-th column.
Then, cB ≥ 1 for every B, since B must contain at least one member of F . On the other hand, rA

is precisely the number of k-element subsets B containing a fixed l-element set A; so rA =
(

n−l
k−l

)

for every A ∈ F . By the double counting principle,

|F| ·
(

n − l

k − l

)
=
∑

A∈F
rA =

∑

B

cB ≥
(

n

k

)
,

which yields

T (n, k, l) = |F| ≥
(

n

k

)/(n − l

k − l

)
=

(
n

l

)/(k

l

)
,

where the last equality is another property of binomial coefficients . �

Our next application of double counting is from number theory: How many numbers divide at
least one of the first n numbers 1, 2, . . . , n? If t(n) is the number of divisors of n, then the behavior
of this function is rather non-uniform: t(p) = 2 for every prime number, whereas t(2m) = m + 1.
It is therefore interesting that the average number

τ(n) =
t(1) + t(2) + · · · + t(n)

n

of divisors is quite stable: It is about ln n.

Proposition 1.10. |τ(n) − ln n| ≤ 1.

Proof. To apply the double counting principle, consider the 0-1 n × n matrix M = (mij)
with mij = 1 iff j is divisible by i:

1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 1
4 1 1 1
5 1 1
6 1 1
7 1
8 1

The number of 1s in the j-th column is exactly the number t(j) of divisors of j. So, summing over
columns we see that the total number of 1s in the matrix is Tn = t(1) + · · · + t(n).

On the other hand, the number of 1s in the i-th row is the number of multipliers i, 2i, 3i, . . . , ri

∑n
n
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Hn − 1 ≤ τ(n) =
1

n
Tn ≤ Hn ,

where

(13) Hn = 1 +
1

2
+

1

3
+ · · · +

1

n
= ln n + γn, 0 ≤ γn ≤ 1

is the n-th harmonic number. �



6. The inclusion-exclusion principle

The principle of inclusion and exclusion (sieve of Eratosthenes) is a powerful tool in the theory
of enumeration as well as in number theory. This principle relates the cardinality of the union of
certain sets to the cardinalities of intersections of some of them, these latter cardinalities often
being easier to handle.

For any two sets A and B we have

|A ∪ B| = |A| + |B| − |A ∩ B|.
In general, given n subsets A1, . . . , An of a set X, we want to calculate the number |A1 ∪ · · · ∪ An|
of points in their union. As the first approximation of this number we can take the sum

(17) |A1| + · · · + |An|.
However, in general, this number is too large since if, say, Ai ∩ Aj 6= ∅ then each point of Ai ∩ Aj

is counted two times in (??): once in |Ai| and once in |Aj |. We can try to correct the situation
by subtracting from (??) the sum

(18)
∑

1≤i<j≤n

|Ai ∩ Aj |.

But then we get a number which is too small since each of the points in Ai ∩ Aj ∩ Ak 6= ∅ is
counted three times in (??): once in |Ai ∩ Aj |, once in |Aj ∩ Ak|, and once in |Ai ∩ Ak|. We can
therefore try to correct the situation by adding the sum

∑

1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak|,

but again we will get a too large number, etc. Nevertheless, it turns out that after n steps we will
get the correct result. This result is known as the inclusion-exclusion principle. The following
notation will be handy: if I is a subset of the index set {1, . . . , n}, we set

AI :=
⋂

i∈I

Ai,

with the convention that A∅ = X.

Proposition 1.13 (Inclusion-Exclusion Principle). Let A1, . . . , An be subsets of X. Then the
number of elements of X which lie in none of the subsets Ai is

(19)
∑

I⊆{1,...,n}
(−1)|I||AI |.

Proof. The sum is a linear combination of cardinalities of sets AI with coefficients +1 and
−1. We can re-write this sum as

∑

I

(−1)|I||AI | =
∑

I

∑

x∈AI

(−1)|I| =
∑

x

∑

I:x∈AI

(−1)|I|.

We calculate, for each point of X, its contribution to the sum, that is, the sum of the coefficients
of the sets AI which contain it.

First suppose that x ∈ X lies in none of the sets Ai. Then the only term in the sum to which
x contributes is that with I = ∅; and this contribution is 1.

Otherwise, the set J := {i : x ∈ Ai} is non-empty; and x ∈ AI precisely when I ⊆ J . Thus,
the contribution of x is

∑

I⊆J

(−1)|I| =

|J|∑

i=0

(|J |
i

)
(−1)i = (1 − 1)|J| = 0

by the binomial theorem.
Thus, points lying in no set Ai contribute 1 to the sum, while points in some Ai contribute 0;

so the overall sum is the number of points lying in none of the sets, as claimed. �



For some applications the following form of the inclusion-exclusion principle is more conve-
nient.

Proposition 1.14. Let A1, . . . , An be a sequence of (not necessarily distinct) sets. Then

(20) |A1 ∪ · · · ∪ An| =
∑

∅6=I⊆{1,...,n}
(−1)|I|+1|AI | .

Proof. The left-hand of (??) is |A∅| minus the number of elements of X = A∅ which lie in
none of the subsets Ai. By Proposition ?? this number is

|A∅| −
∑

I⊆{1,...,n}
(−1)|I||AI | =

∑

∅6=I⊆{1,...,n}
(−1)|I|+1|AI | ,

as desired. �

and so

d(x) · f(y) − d(y) ≥ d(x) · f(y) − r · f(y) + r − d(x)

= (r − d(x)) · (1 − f(y)) ≥ 0 . �

5. Density of 0-1 matrices

Let H be an m × n 0-1 matrix. We say that H is α-dense if at least an α-fraction of all its 
mn entries are 1s. Similarly, a row (or column) is α-dense if at least an α-fraction of all its entries
are 1s.

The next result says that any dense 0-1 matrix must either have one “very dense” row or there 
must be many rows which are still “dense enough.”

Lemma 2.13 (Grigni and Sipser 1995). If H is 2α-dense then either
(a) there exists a row which is

√
α-dense, or

(b) at least
√

α · m of the rows are α-dense.

Note that
√

α is larger than α when α < 1.

Proof. Suppose that the two cases do not hold. We calculate the density of the entire matrix.√
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αn ones. Hence, the fraction of 1s in these rows is also less than α. Thus, the total fraction of 1s
in the matrix is less than 2α, contradicting the 2α-density of H. �

Now consider a slightly different question: if H is α-dense, how many of its rows or columns
are “dense enough”? The answer is given by the following general estimate due to Johan Håstad.
This result appeared in the paper of Karchmer and Wigderson (1990) and was used to prove
that the graph connectivity problem cannot be solved by monotone circuits of logarithmic depth.

Suppose that our universe is a Cartesian product A = A1 × · · · × Ak of some finite sets
A1, . . . , Ak. Hence, elements of A are strings a = (a1, . . . , ak) with ai ∈ Ai. Fix now a subset of
strings H ⊆ A and a point b ∈ Ai. The degree of b in H is the number dH(b) = |{a ∈ H : ai = b}|
of strings in H whose i-th coordinate is b.

Say that a point b ∈ Ai from the i-th set is popular in H if its degree dH(b) is at least a 1/2k
fraction of the average degree of an element in Ai, that is, if

dH(b) ≥ 1

2k

|H|
|Ai|

.

Let Pi ⊆ Ai be the set of all popular points in the i-th set Ai, and consider the Cartesian product
of these sets:

P := P1 × P2 × · · · × Pk .

Lemma 2.14 (Håstad). |P | > |H|.



1
2

P := P1 × P2 × · · · × Pk .

Lemma 2.14 (Håstad). |P | > |H|.

Proof. It is enough to show that |H \ P | < 1
2 |H|. For every non-popular point b ∈ Ai, we

have that

|{a ∈ H : ai = b}| <
1

2k

|H|
|Ai|

.

Since the number of non-popular points in each set Ai does not exceed the total number of points
|Ai|, we obtain

|H \ P | ≤
k∑

i=1

∑

b6∈Pi

|{a ∈ H : ai = b}| <
k∑

i=1

∑

b6∈Pi

1

2k

|H|
|Ai|

≤
k∑

i=1

1

2k
|H| =

1

2
|H| . �

Corollary 2.15. In any 2α-dense 0-1 matrix H either a
√

α-fraction of its rows or a
√

α-
fraction of its columns (or both) are (α/2)-dense.

Proof. Let H be an m × n matrix. We can view H as a subset of the Cartesian product
[m] × [n], where (i, j) ∈ H iff the entry in the i-th row and j-th column is 1. We are going to
apply Lemma ?? with k = 2. We know that |H| ≥ 2αmn. So, if P1 is the set of all rows with at
least 1

4 |H|/|A1| = αn/2 ones, and P2 is the set of all columns with at least 1
4 |H|/|A2| = αm/2

ones, then Lemma ?? implies that

|P1|
m

· |P2|
n

≥ 1

2

|H|
mn

≥ 1

2
· 2αmn

mn
= α .

Hence, either |P1|/m or |P2|/n must be at least
√

α, as claimed. �




