4. Double counting

The double counting principle states the following "obvious" fact: if the elements of a set are counted in two different ways, the answers are the same.

In terms of matrices the principle is as follows. Let M be an $n \times m$ matrix with entries 0 and 1. Let r_{i} be the number of 1 s in the i-th row, and c_{j} be the number of 1 s in the j-th column. Then

$$
\sum_{i=1}^{n} r_{i}=\sum_{j=1}^{m} c_{j}=\text { the total number of } 1 \mathrm{~s} \text { in } M
$$

The next example is a standard demonstration of double counting. Suppose a finite number of people meet at a party and some shake hands. Assume that no person shakes his or her own hand and furthermore no two people shake hands more than once.

Handshaking Lemma. At a party, the number of guests who shake hands an odd number of times is even.

Proof. Let P_{1}, \ldots, P_{n} be the persons. We apply double counting to the set of ordered pairs $\left(P_{i}, P_{j}\right)$ for which P_{i} and P_{j} shake hands with each other at the party. Let x_{i} be the number of times that P_{i} shakes hands, and y the total number of handshakes that occur. On one hand, the number of pairs is $\sum_{i=1}^{n} x_{i}$, since for each P_{i} the number of choices of P_{j} is equal to x_{i}. On the other hand, each handshake gives rise to two pairs $\left(P_{i}, P_{j}\right)$ and $\left(P_{j}, P_{i}\right)$; so the total is $2 y$. Thus $\sum_{i=1}^{n} x_{i}=2 y$. But, if the sum of n numbers is even, then evenly many of the numbers are odd. (Because if we add an odd number of odd numbers and any number of even numbers, the sum will be always odd).

This lemma is also a direct consequence of the following general identity, whose special version for graphs was already proved by Euler. For a point x, its degree or replication number $d(x)$ in a family \mathcal{F} is the number of members of \mathcal{F} containing x.

Proposition 1.7. Let \mathcal{F} be a family of subsets of some set X. Then

$$
\begin{equation*}
\sum_{x \in X} d(x)=\sum_{A \in \mathcal{F}}|A| . \tag{10}
\end{equation*}
$$

Proof. Consider the incidence matrix $M=\left(m_{x, A}\right)$ of \mathcal{F}. That is, M is a 0-1 matrix with $|X|$ rows labeled by points $x \in X$ and with $|\mathcal{F}|$ columns labeled by sets $A \in \mathcal{F}$ such that $m_{x, A}=1$ if and only if $x \in A$. Observe that $d(x)$ is exactly the number of 1 s in the x-th row, and $|A|$ is the number of 1 s in the A-th column.

Graphs are families of 2-element sets, and the degree of a vertex x is the number of edges incident to x, i.e., the number of vertices in its neighborhood. Proposition ?? immediately implies

Theorem 1.8 (Euler 1736). In every graph the sum of degrees of its vertices is two times the number of its edges, and hence, is even.

The following identities can be proved in a similar manner (we leave their proofs as exercises):

$$
\begin{align*}
& \sum_{x \in Y} d(x)=\sum_{A \in \mathcal{F}}|Y \cap A| \text { for any } Y \subseteq X . \tag{11}\\
& \sum_{x \in X} d(x)^{2}=\sum_{A \in \mathcal{F}} \sum_{x \in A} d(x)=\sum_{A \in \mathcal{F}} \sum_{B \in \mathcal{F}}|A \cap B| . \tag{12}
\end{align*}
$$

Turán's number $T(n, k, l)(l \leq k \leq n)$ is the smallest number of l-element subsets of an n-element set X such that every k-element subset of X contains at least one of these sets.

Proposition 1.9. For all positive integers $l \leq k \leq n$,

$$
T(n, k, l) \geq\binom{ n}{l} /\binom{k}{l}
$$

Proof. Let \mathcal{F} be a smallest l-uniform family over X such that every k-subset of X contains at least one member of \mathcal{F}. Take a $0-1$ matrix $M=\left(m_{A, B}\right)$ whose rows are labeled by sets A in \mathcal{F}, columns by k-element subsets B of X, and $m_{A, B}=1$ if and only if $A \subseteq B$.

Let r_{A} be the number of 1 s in the A-th row and c_{B} be the number of 1 s in the B-th column. Then, $c_{B} \geq 1$ for every B, since B must contain at least one member of \mathcal{F}. On the other hand, r_{A} is precisely the number of k-element subsets B containing a fixed l-element set A; so $r_{A}=\binom{n-l}{k-l}$ for every $A \in \mathcal{F}$. By the double counting principle,

$$
|\mathcal{F}| \cdot\binom{n-l}{k-l}=\sum_{A \in \mathcal{F}} r_{A}=\sum_{B} c_{B} \geq\binom{ n}{k}
$$

which yields

$$
T(n, k, l)=|\mathcal{F}| \geq\binom{ n}{k} /\binom{n-l}{k-l}=\binom{n}{l} /\binom{k}{l}
$$

where the last equality is another property of binomial coefficients .
Our next application of double counting is from number theory: How many numbers divide at least one of the first n numbers $1,2, \ldots, n$? If $t(n)$ is the number of divisors of n, then the behavior of this function is rather non-uniform: $t(p)=2$ for every prime number, whereas $t\left(2^{m}\right)=m+1$. It is therefore interesting that the average number

$$
\tau(n)=\frac{t(1)+t(2)+\cdots+t(n)}{n}
$$

of divisors is quite stable: It is about $\ln n$.
Proposition 1.10. $|\tau(n)-\ln n| \leq 1$.
Proof. To apply the double counting principle, consider the 0-1 $n \times n$ matrix $M=\left(m_{i j}\right)$ with $m_{i j}=1$ iff j is divisible by i :

	1	2	3	4	5	6	7	8	9	10	11	12
1	1	1	1	1	1	1	1	1	1	1	1	1
2		1		1		1		1		1		1
3			1			1			1			1
4				1				1				1
5					1					1		
6						1						1
7							1					
8								1				

The number of 1 s in the j-th column is exactly the number $t(j)$ of divisors of j. So, summing over columns we see that the total number of 1 s in the matrix is $T_{n}=t(1)+\cdots+t(n)$.

On the other hand, the number of 1 s in the i-th row is the number of multipliers $i, 2 i, 3 i, \ldots, r i$ of i such that $r i \leq n$. Hence, we have exactly $\lfloor n / i\rfloor$ ones in the i-th row. Summing over rows, we obtain that $T_{n}=\sum_{i=1}^{n}\lfloor n / i\rfloor$. Since $x-1<\lfloor x\rfloor \leq x$ for every real number x, we obtain that

$$
H_{n}-1 \leq \tau(n)=\frac{1}{n} T_{n} \leq H_{n}
$$

where

$$
\begin{equation*}
H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=\ln n+\gamma_{n}, \quad 0 \leq \gamma_{n} \leq 1 \tag{13}
\end{equation*}
$$

is the n-th harmonic number.

6. The inclusion-exclusion principle

The principle of inclusion and exclusion (sieve of Eratosthenes) is a powerful tool in the theory of enumeration as well as in number theory. This principle relates the cardinality of the union of certain sets to the cardinalities of intersections of some of them, these latter cardinalities often being easier to handle.

For any two sets A and B we have

$$
|A \cup B|=|A|+|B|-|A \cap B| .
$$

In general, given n subsets A_{1}, \ldots, A_{n} of a set X, we want to calculate the number $\left|A_{1} \cup \cdots \cup A_{n}\right|$ of points in their union. As the first approximation of this number we can take the sum

$$
\begin{equation*}
\left|A_{1}\right|+\cdots+\left|A_{n}\right| \tag{17}
\end{equation*}
$$

However, in general, this number is too large since if, say, $A_{i} \cap A_{j} \neq \emptyset$ then each point of $A_{i} \cap A_{j}$ is counted two times in (??): once in $\left|A_{i}\right|$ and once in $\left|A_{j}\right|$. We can try to correct the situation by subtracting from (??) the sum

$$
\begin{equation*}
\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \tag{18}
\end{equation*}
$$

But then we get a number which is too small since each of the points in $A_{i} \cap A_{j} \cap A_{k} \neq \emptyset$ is counted three times in (??): once in $\left|A_{i} \cap A_{j}\right|$, once in $\left|A_{j} \cap A_{k}\right|$, and once in $\left|A_{i} \cap A_{k}\right|$. We can therefore try to correct the situation by adding the sum

$$
\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|
$$

but again we will get a too large number, etc. Nevertheless, it turns out that after n steps we will get the correct result. This result is known as the inclusion-exclusion principle. The following notation will be handy: if I is a subset of the index set $\{1, \ldots, n\}$, we set

$$
A_{I}:=\bigcap_{i \in I} A_{i}
$$

with the convention that $A_{\emptyset}=X$.
Proposition 1.13 (Inclusion-Exclusion Principle). Let A_{1}, \ldots, A_{n} be subsets of X. Then the number of elements of X which lie in none of the subsets A_{i} is

$$
\begin{equation*}
\sum_{I \subseteq\{1, \ldots, n\}}(-1)^{|I|}\left|A_{I}\right| . \tag{19}
\end{equation*}
$$

Proof. The sum is a linear combination of cardinalities of sets A_{I} with coefficients +1 and -1 . We can re-write this sum as

$$
\sum_{I}(-1)^{|I|}\left|A_{I}\right|=\sum_{I} \sum_{x \in A_{I}}(-1)^{|I|}=\sum_{x} \sum_{I: x \in A_{I}}(-1)^{|I|}
$$

We calculate, for each point of X, its contribution to the sum, that is, the sum of the coefficients of the sets A_{I} which contain it.

First suppose that $x \in X$ lies in none of the sets A_{i}. Then the only term in the sum to which x contributes is that with $I=\emptyset$; and this contribution is 1 .

Otherwise, the set $J:=\left\{i: x \in A_{i}\right\}$ is non-empty; and $x \in A_{I}$ precisely when $I \subseteq J$. Thus, the contribution of x is

$$
\sum_{I \subseteq J}(-1)^{|I|}=\sum_{i=0}^{|J|}\binom{|J|}{i}(-1)^{i}=(1-1)^{|J|}=0
$$

by the binomial theorem.
Thus, points lying in no set A_{i} contribute 1 to the sum, while points in some A_{i} contribute 0 ; so the overall sum is the number of points lying in none of the sets, as claimed.

For some applications the following form of the inclusion-exclusion principle is more convenient.

Proposition 1.14. Let A_{1}, \ldots, A_{n} be a sequence of (not necessarily distinct) sets. Then

$$
\begin{equation*}
\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{\emptyset \neq I \subseteq\{1, \ldots, n\}}(-1)^{|I|+1}\left|A_{I}\right| \tag{20}
\end{equation*}
$$

Proof. The left-hand of (??) is $\left|A_{\emptyset}\right|$ minus the number of elements of $X=A_{\emptyset}$ which lie in none of the subsets A_{i}. By Proposition ?? this number is

$$
\left|A_{\emptyset}\right|-\sum_{I \subseteq\{1, \ldots, n\}}(-1)^{|I|}\left|A_{I}\right|=\sum_{\emptyset \neq I \subseteq\{1, \ldots, n\}}(-1)^{|I|+1}\left|A_{I}\right|,
$$

as desired.

5. Density of 0-1 matrices

Let H be an $m \times n 0-1$ matrix. We say that H is α-dense if at least an α-fraction of all its $m n$ entries are 1s. Similarly, a row (or column) is α-dense if at least an α-fraction of all its entries are 1 s .

The next result says that any dense 0-1 matrix must either have one "very dense" row or there must be many rows which are still "dense enough."

Lemma 2.13 (Grigni and Sipser 1995). If H is 2α-dense then either
(a) there exists a row which is $\sqrt{\alpha}$-dense, or
(b) at least $\sqrt{\alpha} \cdot m$ of the rows are α-dense.

Note that $\sqrt{\alpha}$ is larger than α when $\alpha<1$.
Proof. Suppose that the two cases do not hold. We calculate the density of the entire matrix. Since (b) does not hold, less than $\sqrt{\alpha} \cdot m$ of the rows are α-dense. Since (a) does not hold, each of these rows has less than $\sqrt{\alpha} \cdot n 1 \mathrm{~s}$; hence, the fraction of 1 s in α-dense rows is strictly less than $(\sqrt{\alpha})(\sqrt{\alpha})=\alpha$. We have at most m rows which are not α-dense, and each of them has less than αn ones. Hence, the fraction of 1 s in these rows is also less than α. Thus, the total fraction of 1s in the matrix is less than 2α, contradicting the 2α-density of H.

Now consider a slightly different question: if H is α-dense, how many of its rows or columns are "dense enough"? The answer is given by the following general estimate due to Johan Håstad. This result appeared in the paper of Karchmer and Wigderson (1990) and was used to prove that the graph connectivity problem cannot be solved by monotone circuits of logarithmic depth.

Suppose that our universe is a Cartesian product $A=A_{1} \times \cdots \times A_{k}$ of some finite sets A_{1}, \ldots, A_{k}. Hence, elements of A are strings $\boldsymbol{a}=\left(a_{1}, \ldots, a_{k}\right)$ with $a_{i} \in A_{i}$. Fix now a subset of strings $H \subseteq A$ and a point $b \in A_{i}$. The degree of b in H is the number $d_{H}(b)=\left|\left\{\boldsymbol{a} \in H: a_{i}=b\right\}\right|$ of strings in H whose i-th coordinate is b.

Say that a point $b \in A_{i}$ from the i-th set is popular in H if its degree $d_{H}(b)$ is at least a $1 / 2 k$ fraction of the average degree of an element in A_{i}, that is, if

$$
d_{H}(b) \geq \frac{1}{2 k} \frac{|H|}{\left|A_{i}\right|}
$$

Let $P_{i} \subseteq A_{i}$ be the set of all popular points in the i-th set A_{i}, and consider the Cartesian product of these sets:

$$
P:=P_{1} \times P_{2} \times \cdots \times P_{k}
$$

Lemma 2.14 (Håstad). $|P|>\frac{1}{2}|H|$.
Proof. It is enough to show that $|H \backslash P|<\frac{1}{2}|H|$. For every non-popular point $b \in A_{i}$, we have that

$$
\left|\left\{\boldsymbol{a} \in H: a_{i}=b\right\}\right|<\frac{1}{2 k} \frac{|H|}{\left|A_{i}\right|} .
$$

Since the number of non-popular points in each set A_{i} does not exceed the total number of points $\left|A_{i}\right|$, we obtain

$$
\begin{aligned}
|H \backslash P| & \leq \sum_{i=1}^{k} \sum_{b \notin P_{i}}\left|\left\{\boldsymbol{a} \in H: a_{i}=b\right\}\right|<\sum_{i=1}^{k} \sum_{b \notin P_{i}} \frac{1}{2 k} \frac{|H|}{\left|A_{i}\right|} \\
& \leq \sum_{i=1}^{k} \frac{1}{2 k}|H|=\frac{1}{2}|H| .
\end{aligned}
$$

Corollary 2.15. In any 2α-dense 0-1 matrix H either a $\sqrt{\alpha}$-fraction of its rows or $a \sqrt{\alpha}$ fraction of its columns (or both) are ($\alpha / 2$)-dense.

Proof. Let H be an $m \times n$ matrix. We can view H as a subset of the Cartesian product $[m] \times[n]$, where $(i, j) \in H$ iff the entry in the i-th row and j-th column is 1 . We are going to apply Lemma ?? with $k=2$. We know that $|H| \geq 2 \alpha m n$. So, if P_{1} is the set of all rows with at least $\frac{1}{4}|H| /\left|A_{1}\right|=\alpha n / 2$ ones, and P_{2} is the set of all columns with at least $\frac{1}{4}|H| /\left|A_{2}\right|=\alpha m / 2$ ones, then Lemma ?? implies that

$$
\frac{\left|P_{1}\right|}{m} \cdot \frac{\left|P_{2}\right|}{n} \geq \frac{1}{2} \frac{|H|}{m n} \geq \frac{1}{2} \cdot \frac{2 \alpha m n}{m n}=\alpha .
$$

Hence, either $\left|P_{1}\right| / m$ or $\left|P_{2}\right| / n$ must be at least $\sqrt{\alpha}$, as claimed.

