
CHAPTER 4

The Pigeonhole Principle

The pigeonhole principle (also known as Dirichlet’s principle) states the “obvious” fact that
n + 1 pigeons cannot sit in n holes so that every pigeon is alone in its hole. More generally, the
pigeonhole principle states the following:

If a set consisting of at least rs + 1 objects is partitioned into r classes, then some class
receives at least s + 1 objects.

Its truth is easy to verify: if every class receives at most s objects, then a total of at most rs
objects have been distributed. To see that the result is best possible, observe that a set with at
most rs points can be divided into r groups with at most s points in each group; hence none of
the groups contains s + 1 points.

This is one of the oldest “non-constructive” principles: it states only the existence of a pi-
geonhole with more than k items and says nothing about how to find such a pigeonhole. Today
we have powerful and far reaching generalizations of this principle (Ramsey-like theorems, the
probabilistic method, etc.). We will talk about them later.

As trivial as the pigeonhole principle itself may sound, it has numerous nontrivial applica-
tions. The hard part in applying this principle is to decide what to take as pigeons and what as
pigeonholes. Let us illustrate this by several examples.

1. Some quickies

To “warm-up,” let us start with the simplest applications. The degree of a vertex x in a graph
G is the number d(x) of edges of G adjacent to x.

Proposition 4.1. In any graph there exist two vertices of the same degree.

Proof. Given a graph G on n vertices, make n pigeonholes labeled from 0 up to n−1 and put
a vertex x into the k-th pigeonhole iff d(x) = k. If some pigeonhole contains more than one vertex,
we are done. So, assume that no pigeonhole has more than one vertex. There are n vertices going
into the n pigeonholes; hence each pigeonhole has exactly one vertex. Let x and y be the vertices
lying in the pigeonholes labeled 0 and n − 1, respectively. The vertex x has degree 0 and so has
no connection with other vertices, including y. But y has degree n − 1 and hence, is connected
with all the remaining vertices, including x, a contradiction. �

If G is a finite graph, the independence number α(G) is the maximum number of pairwise
nonadjacent vertices of G. The chromatic number χ(G) of G is the minimum number of colors
in a coloring of the vertices of G with the property that no two adjacent vertices have the same
color.

Proposition 4.2. In any graph G with n vertices, n ≤ α(G) · χ(G).

Proof. Consider the vertices of G partitioned into χ(G) color classes (sets of vertices with
the same color). By the pigeonhole principle, one of the classes must contain at least n/χ(G)
vertices, and these vertices are pairwise nonadjacent. Thus α(G) ≥ n/χ(G), as desired. �

A graph is connected if there is a path between any two of its vertices.

Proposition 4.3. Let G be an n-vertex graph. If every vertex has a degree of at least (n−1)/2
then G is connected.
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Figure 1. There are only n − 2 vertices and at least n − 1 edges going to them.

Proof. Take any two vertices x and y. If these vertices are not adjacent, then at least n − 1
edges join them to the remaining vertices, because both x and y have a degree of at least (n−1)/2.

Since there are only n − 2 other vertices, the pigeonhole principle implies that one of them
must be adjacent to both x and y (see Fig. ??). We have proved that every pair of vertices is
adjacent or has a common neighbor, so G is connected. �

Remark 4.4. A result is best possible if the conclusion no longer holds when we weaken one
of the conditions. Such is, for example, the result above: let n be even and G be a union of two
vertex disjoint complete graphs on n/2 vertices; then every vertex has degree (n − 2)/2, but the
graph is disconnected.

Note that, in fact, we have proved more: if every vertex of an n-vertex graph has degree at
least (n − 1)/2 then the graph has diameter at most two. The diameter of a graph is the smallest
number k such that every two vertices are connected by a path with at most k edges.

2. The Erdős–Szekeres theorem

Let A = (a1, a2, . . . , an) be a sequence of n different numbers. A subsequence of k terms of A
is a sequence B of k distinct terms of A appearing in the same order in which they appear in A.
In symbols, we have B = (ai1

, ai2
, . . . , aik

), where i1 < i2 < · · · < ik. A subsequence B is said to
be increasing if ai1

< ai2
< · · · < aik

, and decreasing if ai1
> ai2

> · · · > aik
.

We will be interested in the length of the longest increasing and decreasing subsequences of
A. It is intuitively plausible that there should be some kind of tradeoff between these lengths. If
the longest increasing subsequence is short, say has length s, then any subsequence of A of length
s + 1 must contain a pair of decreasing elements, so there are lots of pairs of decreasing elements.
Hence, we would expect the longest decreasing sequence to be large. An extreme case occurs when
s = 1. Then the whole sequence A is decreasing.

How can we quantify the feeling that the length of both, longest increasing and longest de-
creasing subsequences, cannot be small? A famous result of Erdős and Szekeres (1935) gives an
answer to this question and was one of the first results in extremal combinatorics.

Theorem 4.5 (Erdős–Szekeres 1935). Let A = (a1, . . . , an) be a sequence of n different real
numbers. If n ≥ sr + 1 then either A has an increasing subsequence of s + 1 terms or a decreasing
subsequence of r + 1 terms (or both).

Proof (due to Seidenberg 1959). Associate to each term ai of A a pair of “scores” (xi, yi) where xi

is the number of terms in the longest increasing subsequence ending at ai, and yi is the number
of terms in the longest decreasing subsequence starting at ai. Observe that no two terms have the
same score, i.e., that (xi, yi) 6= (xj , yj) whenever i 6= j. Indeed, if we have · · · ai · · · aj · · · , then
either ai < aj and the longest increasing subsequence ending at ai can be extended by adding
on aj (so that xi < xj), or ai > aj and the longest decreasing subsequence starting at aj can be
preceded by ai (so that yi > yj).

Now make a grid of n2 pigeonholes:
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Place each term ai in the pigeonhole with coordinates (xi, yi). Each term of A can be placed
in some pigeonhole, since 1 ≤ xi, yi ≤ n for all i = 1, . . . , n. Moreover, no pigeonhole can have
more than one term because (xi, yi) 6= (xj , yj) whenever i 6= j. Since |A| = n ≥ sr + 1, we have
more items than the pigeonholes shaded in the above picture. So some term ai will lie outside
this shaded region. But this means that either xi ≥ s + 1 or yi ≥ r + 1 (or both), exactly what
we need. �

The set of real numbers is totally ordered. That is, for any two distinct numbers x and y,
either x < y or y < x. The following lemma, due to Dilworth, generalizes the Erdős–Szekeres
theorem to sets in which two elements may or may not be comparable.

A partial order on a set P is a binary relation < between its elements which is transitive and
irreflexive: if x < y and y < z then x < z, but x < y and y < x cannot both hold. We write x ≤ y
if x < y or x = y. Elements x and y are comparable if either x ≤ y or y ≤ x (or both) hold. A
chain in a poset P is a subset C ⊆ P such that any two of its points are comparable. Dually, an
antichain is a subset A ⊆ P such that no two of its points are comparable.

Lemma 4.6 (Dilworth 1950). In any partial order on a set P of n ≥ sr + 1 elements, there
exists a chain of length s + 1 or an antichain of size r + 1.

Proof. A chain is maximal if it cannot be prolonged by adding a new element. Let C1, . . . , Cm

be all maximal chains in P , and suppose there is no chain of length s + 1. Since the chains Ci

must cover all n points of P , the pigeonhole principle implies that we must have m ≥ r + 1 such
chains. Let xi ∈ Ci be the greatest element of Ci. Then no two elements xi and xj with i 6= j
can be comparable: if xi ≤ xj then Ci ∪ {xj} would also be a chain, a contradiction with the
maximality of Ci. Thus, the elements x1, . . . , xm form an antichain of size m ≥ r + 1. �

This lemma implies the Erdős–Szekeres theorem (we address this question in Exercise ??).

3. Mantel’s theorem

Here we discuss one typical extremal property of graphs. How many edges are possible in a
triangle-free graph G on n vertices? A triangle is a set of three vertices, each two of which are
connected by an edge. Certainly, G can have n2/4 edges without containing a triangle: just let
G be the bipartite complete graph consisting of two sets of n/2 vertices each and all the edges
between the two sets. Indeed, n2/4 turns out to be the maximum possible number of edges: if we
take one more edge then the graph will have a triangle.

We give four proofs of this beautiful result: the first (original) proof is based on double

counting, the second uses the inequality
√

ab ≤ (a + b)/2 of the arithmetic and geometric mean,
the third uses the pigeonhole principle, and the fourth employs the so-called “shifting argument”
(we will give this last proof in the Sect. ?? devoted to this argument).

Theorem 4.7 (Mantel 1907). If a graph G on n vertices contains more than n2/4 edges, then
G contains a triangle.

First proof. Let G be a graph on a set V of n vertices containing m > n2/4 edges. Assume that G
has no triangles. Then adjacent vertices have no common neighbors, so d(x) + d(y) ≤ n for each
edge {x, y} ∈ E. Summing over all edges of G, we have (cf. Equation (??))

∑

x∈V

d(x)2 =
∑

{x,y}∈E

(d(x) + d(y)) ≤ mn .
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On the other hand, using Cauchy–Schwarz inequality (see Notation or Proposition ??) and Euler’s
equality

∑
x∈V d(x) = 2m (see Theorem ??), we obtain

∑

x∈V

d(x)2 ≥
(∑

x∈V d(x)
)2

|V | =
4m2

n
.

These two inequalities imply that m ≤ n2/4, contradicting the hypothesis. �

Second proof. Let G = (V, E) be a graph on a set V of n vertices and assume that G has no
triangles. Let A ⊆ V be the largest independent set, i.e., a maximal set of vertices, no two
of which are adjacent in G. Since G is triangle-free, the neighbors of a vertex x ∈ V form an
independent set, and we infer d(x) ≤ |A| for all x.

The set B = V \ A meets every edge of G. Counting the edges of G according to their end-
vertices in B, we obtain |E| ≤ ∑

x∈B d(x). The inequality of the arithmetic and geometric mean
(??) yields

|E| ≤
∑

x∈B

d(x) ≤ |A| · |B| ≤
( |A| + |B|

2

)2

=
n2

4
.

�

Third proof. To avoid ceilings and floorings, we will prove the theorem for graphs on an even
number 2n of vertices. We want to prove that every such graph with at least n2 + 1 edges must
contain a triangle. We argue by induction on n. If n = 1, then G cannot have n2 + 1 edges;
hence the statement is true. Assuming the result for n, we now consider a graph G on 2(n + 1)
vertices with (n + 1)2 + 1 edges. Let x and y be adjacent vertices in G, and let H be the induced
subgraph on the remaining 2n vertices. If H contains at least n2 + 1 edges then we are done by
the induction hypothesis. Suppose that H has at most n2 edges, and therefore at least 2n + 1
edges of G emanate from x and y to vertices in H:

Hz

yx

By the pigeonhole principle, among these 2n + 1 edges there must be an edge from x and an
edge from y to the same vertex z in H. Hence G contains the triangle {x, y, z}. �

4. Turán’s theorem

A k-clique is a graph on k vertices, every two of which are connected by an edge. For example,
triangles are 3-cliques. Mantel’s theorem says that, if a graph on n vertices has no 3-clique then
it has at most n2/4 edges. What about k > 3?

The answer is given by a fundamental result of Paul Turán, which initiated extremal graph
theory.

Theorem 4.8 (Turán 1941). If a graph G = (V, E) on n vertices has no (k + 1)-clique, k ≥ 2,
then

(36) |E| ≤
(

1 − 1

k

)
n2

2
.

Like Mantel’s theorem, this result was rediscovered many times with various different proofs.
Here we present the original one due to Turán. The proof based on so-called “weight shifting”
argument is addressed in Exercise ??. In Sect. ?? we will give a proof which employs ideas of a
totally different nature – the probabilistic argument.

Proof. We use induction on n. Inequality (??) is trivially true for n = 1. The case k = 2 is
Mantel’s theorem. Suppose now that the inequality is true for all graphs on at most n−1 vertices,
and let G = (V, E) be a graph on n vertices without (k + 1)-cliques and with a maximal number
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of edges. This graph certainly contains k-cliques, since otherwise we could add edges. Let A be a
k-clique, and set B = V \ A.

Since each two vertices of A are joined by an edge, A contains eA =
(

k
2

)
edges. Let eB be the

number of edges joining the vertices of B and eA,B the number of edges between A and B. By
induction, we have

eB ≤
(

1 − 1

k

)
(n − k)2

2
.

Since G has no (k + 1)-clique, every x ∈ B is adjacent to at most k − 1 vertices in A, and we
obtain

eA,B ≤ (k − 1)(n − k).

Summing up and using the identity

(
1 − 1

k

)
n2

2
=

(
k

2

)(n

k

)2

we conclude that

|E| ≤ eA + eB + eA,B ≤
(

k

2

)
+

(
k

2

)(
n − k

k

)2

+ (k − 1)(n − k)

=

(
k

2

)(
1 +

n − k

k

)2

=

(
1 − 1

k

)
n2

2
. �

An n-vertex graph T (n, k) that does not contain any (k + 1)-clique may be formed by parti-
tioning the set of vertices into k parts of equal or nearly-equal size, and connecting two vertices 
by an edge whenever they belong to two different parts. Thus, Turán’s theorem states that the 
graph T (n, k) has the largest number of edges among all n-vertex graphs without (k + 1)-cliques.



CHAPTER 5

Systems of Distinct Representatives

A system of distinct representatives for a sequence of (not necessarily distinct) sets S1, S2, . . . , Sm

is a sequence of distinct elements x1, x2, . . . , xm such that xi ∈ Si for all i = 1, 2, . . . , m.
When does such a system exist? This problem is called the “marriage problem” because an

easy reformulation of it asks whether we can marry each of m girls to a boy she knows; boys are
the elements and Si is the set of boys known to the i-th girl.

Clearly, if the sets S1, S2, . . . , Sm have a system of distinct representatives then the following
Hall’s Condition is fulfilled:

(∗) for every k = 1, 2, . . . , m the union of any k sets has at least k elements:
∣∣∣∣
⋃

i∈I

Si

∣∣∣∣ ≥ |I| for all I ⊆ {1, . . . , m}.

Surprisingly, this obvious necessary condition is also sufficient.

1. The marriage theorem

The following fundamental result is known as Hall’s marriage theorem (Hall 1935), though an
equivalent form of it was discovered earlier by König (1931) and Egerváry (1931), and the result is
also a special case of Menger’s theorem (1927). The case when we have the same number of girls
as boys was proved by Frobenius (1917).

Theorem 5.1 (Hall’s Theorem). The sets S1, S2, . . . , Sm have a system of distinct repre-
sentatives if and only if (∗) holds.

Proof. We prove the sufficiency of Hall’s condition (∗) by induction on m. The case m = 1
is clear. Assume that the claim holds for any collection with less than m sets.

Case 1: For each k, 1 ≤ k < m, the union of any k sets contains more than k elements.
Take any of the sets, and choose any of its elements x as its representative, and remove x from

all the other sets. The union of any s ≤ m − 1 of the remaining m − 1 sets has at least s elements,
and therefore the remaining sets have a system of distinct representatives, which together with x
give a system of distinct representatives for the original family.

Case 2: The union of some k, 1 ≤ k < m, sets contains exactly k elements.
By the induction hypothesis, these k sets have a system of distinct representatives. Remove

these k elements from the remaining m − k sets. Take any s of these sets. Their union contains at
least s elements, since otherwise the union of these s sets and the k sets would have less than s+k
elements. Consequently, the remaining m − k sets also have a system of distinct representatives
by the induction hypothesis. Together these two systems of distinct representatives give a system
of distinct representatives for the original family. �

In general, Hall’s condition (∗) is hard to verify: we must check if the union of any k, 1 ≤
k ≤ m, of the sets S1, . . . , Sm contains at least k elements. But if we know more about these sets,
then (sometimes) the situation is much better. Here is an example.

Corollary 5.2. Let S1, . . . , Sm be r-element subsets of an n-element set such that each
element belongs to the same number d of these sets. If m ≤ n, then the sets S1, . . . , Sm have a
system of distinct representatives.

53
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Figure 1. A partial 2 × 5 Latin square that cannot be completed

Proof. By the double counting argument (??), mr = nd, and hence, m ≤ n implies that
d ≤ r. Now suppose that S1, . . . , Sm does not have a system of distinct representatives. By Hall’s
theorem, the union Y = Si1

∪ · · · ∪ Sik
of some k (1 ≤ k ≤ m) sets contains strictly less than k

elements. For x ∈ Y , let dx be the number of these sets containing x. Then, again, using (??), we
obtain

rk =

k∑

j=1

|Sij
| =

∑

x∈Y

dx ≤ d|Y | < dk,

a contradiction with d ≤ r. �

Hall’s theorem was generalized in different ways. Suppose, for example, that each of the
elements of the underlying set is colored either in red or in blue. Interpret red points as “bad”
points. Given a system of subsets of this (colored) set, we would like to come up with a system of
distinct representatives which has as few bad elements as possible.

Theorem 5.3 (Chvátal–Szemerédi 1988). The sets S1, . . . , Sm have a system of distinct rep-
resentatives with at most t red elements if and only if they have a system of distinct representatives
and for every k = 1, 2, . . . , m the union of any k sets has at least k − t blue elements.

Proof. The “only if” part is obvious. To prove the “if” part, let R be the set of red elements.
We may assume that |R| > t (otherwise the conclusion is trivial). Now enlarge S1, . . . , Sm to
S1, . . . , Sm, Sm+1, . . . , Sm+r by adding r = |R| − t copies of the set R. Observe that the sequence
S1, . . . , Sm has a system of distinct representatives with at most t red elements if and only if the
extended sequence has a system of distinct representatives (without any restriction). Hence, Hall’s
theorem reduces our task to proving that the extended sequence fulfills Hall’s condition (∗), i.e.,
that for any set of indices I ⊆ {1, . . . , m+r}, the union Y =

⋃
i∈I Si contains at least |I| elements.

Let J = I ∩ {1, . . . , m}. If J = I then, by the first assumption, the sets Si (i ∈ I) have a system
of distinct representatives, and hence, |Y | ≥ |I|. Otherwise, by the second assumption,

|Y | =

∣∣∣∣
⋃

i∈J

(Si \ R)

∣∣∣∣+ |R| ≥ (|J | − t) + |R|

= |J | + (|R| − t) ≥ |J | + |I \ J | = |I|;
hence (∗) holds again. �

2. Two applications

In this section we present two applications of Hall’s theorem to prove results whose statement
does not seem to be related at all to set systems and their representatives.

2.1. Latin rectangles. An r ×n Latin rectangle is an r ×n matrix with entries in {1, . . . , n}
such that each of the numbers 1, 2, . . . , n occurs once in each row and at most once in each column.
A Latin square is a Latin r×n-rectangle with r = n. This is one of the oldest combinatorial objects,
whose study goes back to ancient times.

Suppose somebody gives us an n×n matrix, some of whose entries are filled with the numbers
from {1, . . . , n} so that no number occurs more than once in a row or column. Our goal is to fill
the remaining entries so that to get a Latin square. When is this possible? Of course, the fewer
entries are filled, the more chances we have to complete the matrix. Fig. ?? shows that, in general,
it is possible to fill n entries so that the resulting partial matrix cannot be completed.
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In 1960, Trevor Evans raised the following question: if fewer than n entries in an n × n
matrix are filled, can one then always complete it to obtain a Latin square? The assertion that a
completion is always possible became known as the Evans conjecture, and was proved by Smetaniuk
(1981) using a quite subtle induction argument.

On the other hand, it was long known that if a partial Latin square has no partially filled rows
(that is, each row is either completely filled or completely free) then it can always be completed.
That is, we can build Latin squares by adding rows one-by-one. And this can be easily derived
from Hall’s theorem.

Theorem 5.4 (Ryser 1951). If r < n, then any given r × n Latin rectangle can be extended
to an (r + 1) × n Latin rectangle.

Proof. Let R be an r × n Latin rectangle. For j = 1, . . . , n, define Sj to be the set of those
integers 1, 2, . . . , n which do not occur in the j-th column of R. It is sufficient to prove that
the sets S1, . . . , Sn have a system of distinct representatives. But this follows immediately from
Corollary ??, because: every set Sj has precisely n − r elements, and each element belongs to
precisely n − r sets Sj (since it appears in precisely r columns of the rectangle R). �

2.2. Decomposition of doubly stochastic matrices. Using Hall’s theorem we can obtain
a basic result of polyhedral combinatorics, due to Birkhoff (1949) and von Neumann (1953).

An n×n matrix A = {aij} with real non-negative entries aij ≥ 0 is doubly stochastic if the sum
of entries along any row and any column equals 1. A permutation matrix is a doubly stochastic
matrix with entries 0 and 1; such a matrix has exactly one 1 in each row and in each column.
Doubly stochastic matrices arise in the theory of Markov chains: aij is the transition probability
from the state i to the state j. A matrix A is a convex combination of matrices A1, . . . , As if there
exist non-negative reals λ1, . . . , λs such that A =

∑s
i=1 λiAi and

∑s
i=1 λi = 1.

Birkhoff–Von Neumann Theorem. Every doubly stochastic matrix is a convex combina-
tion of permutation matrices.

Proof. We will prove a more general result that every n × n non-negative matrix A = (aij)
having all row and column sums equal to some positive value γ > 0 can be expressed as a linear
combination A =

∑s
i=1 λiPi of permutation matrices P1, . . . , Ps, where λ1, . . . , λs are non-negative

reals such that
∑s

i=1 λi = γ.
To prove this, we apply induction on the number of non-zero entries in A. Since γ > 0, we have

at least n such entries. If there are exactly n non-zero entries then A = γP for some permutation
matrix P , and we are done. Now suppose that A has more than n non-zero entries and that the
result holds for matrices with a smaller number of such entries. Define

Si = {j : aij > 0}, i = 1, 2, . . . , n,

and observe that the sets S1, . . . , Sn fulfill Hall’s condition. Indeed, if the union of some k (1 ≤ k ≤
n) of these sets contained less than k elements, then all the non-zero entries of the corresponding
k rows of A would occupy no more than k −1 columns; hence, the sum of these entries by columns
would be at most (k − 1)γ, whereas the sum by rows is kγ, a contradiction.

By Hall’s theorem, there is a system of distinct representatives

j1 ∈ S1, . . . , jn ∈ Sn.

Take the permutation matrix P1 = {pij} with entries pij = 1 if and only if j = ji. Let λ1 =
min{a1j1

, . . . , anjn
}, and consider the matrix A1 = A − λ1P1. By the definition of the sets Si,

λ1 > 0. So, this new matrix A1 has less non-zero entries than A. Moreover, the matrix A1 satisfies
the condition of the theorem with γ1 = γ − λ1. We can therefore apply the induction hypothesis
to A1, which yields a decomposition A1 = λ2P2 + · · · + λsPs, and hence, A = λ1P1 + A1 =
λ1P1 + λ2P2 + · · · + λsPs, as desired. �
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3. Min–max theorems

The early results of Frobenius and König have given rise to a large number of min-max
theorems in combinatorics, in which the minimum of one quantity equals the maximum of another.
Celebrated among these are:

• Menger’s theorem (Menger 1927): the minimum number of vertices separating two given
vertices in a graph is equal to the maximum number of vertex-disjoint paths between
them;

• König–Egerváry’s min-max theorem (König 1931, Egerváry 1931): the size of a largest
matching in a bipartite graph is equal to the smallest set of vertices which together touch
every edge;

• Dilworth’s theorem for partially ordered sets (Dilworth 1950): the minimum number of
chains (totally ordered sets) which cover a partially ordered set is equal to the maximum
size of an antichain (set of incomparable elements).

Here we present the proof of König–Egerváry’s theorem (stated not for bipartite graphs but for
their adjacency matrices); the proof of Dilworth’s theorem is given in Sect. ??.

By Hall’s theorem, we know whether each of the girls can be married to a boy she knows. If so,
all are happy (except for the boys not chosen ...). But what if not? In this sad situation it would
be nice to make as many happy marriages as possible. So, given a sequence of sets S1, S2, . . . , Sm,
we try to find a system of distinct representatives for as many of these sets as possible. In terms
of 0-1 matrices this problem is solved by the following result.

Let A be an m × n matrix, all whose entries have value 0 or 1. Two 1s are dependent if they
are on the same row or on the same column; otherwise, they are independent. The size of the
largest set of independent 1s is also known as the term rank of A.

Theorem 5.5 (König 1931, Egerváry 1931). Let A be an m × n 0-1 matrix. The maximum
number of independent 1s is equal to the minimum number of rows and columns required to cover
all the 1s in A.

Proof. Let r denote the maximum number of independent 1s and R the minimum number of
rows and columns required to cover all the 1s. Clearly, R ≥ r, because we can find r independent
1s in A, and any row or column covers at most one of them.

We need to prove that r ≥ R. Assume that some a rows and b columns cover all the 1s and
a + b = R. Because permuting the rows and columns changes neither r nor R, we may assume
that the first a rows and the first b columns cover the 1s. Write A in the form

A =

(
Ba×b Ca×(n−b)

D(m−a)×b E(m−a)×(n−b)

)
.

We know that there are no 1s in E. We will show that there are a independent 1s in C. The same
argument shows – by symmetry – that there are b independent 1s in D. Since altogether these
a + b 1s are independent, this shows that r ≥ a + b = R, as desired.

We use Hall’s theorem. Define

Si = {j : cij = 1} ⊆ {1, 2, . . . , n − b},

as the set of locations of the 1s in the i-th row of C = (cij). We claim that the sequence
S1, S2, . . . , Sa has a system of distinct representatives, i.e., we can choose a 1 from each row, no
two in the same column. Otherwise, Hall’s theorem tells us that the 1s in some k (1 ≤ k ≤ a) of
these rows can all be covered by less than k columns. But then we obtain a covering of all the 1s
in A with fewer than a + b rows and columns, a contradiction. �




